| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imadrhmcl.r |
|
| 2 |
|
imadrhmcl.0 |
|
| 3 |
|
imadrhmcl.h |
|
| 4 |
|
imadrhmcl.s |
|
| 5 |
|
imadrhmcl.1 |
|
| 6 |
|
sdrgsubrg |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
rhmima |
|
| 9 |
3 7 8
|
syl2anc |
|
| 10 |
1
|
subrgring |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
unitss |
|
| 15 |
14
|
a1i |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
16 17
|
rhmf |
|
| 19 |
3 18
|
syl |
|
| 20 |
19
|
adantr |
|
| 21 |
|
rhmrcl2 |
|
| 22 |
3 21
|
syl |
|
| 23 |
|
simpr |
|
| 24 |
|
eqid |
|
| 25 |
1 24
|
subrg1 |
|
| 26 |
9 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
1 2
|
subrg0 |
|
| 29 |
9 28
|
syl |
|
| 30 |
29
|
adantr |
|
| 31 |
23 27 30
|
3eqtr4rd |
|
| 32 |
17 2 24
|
01eq0ring |
|
| 33 |
22 31 32
|
syl2an2r |
|
| 34 |
33
|
feq3d |
|
| 35 |
20 34
|
mpbid |
|
| 36 |
2
|
fvexi |
|
| 37 |
36
|
fconst2 |
|
| 38 |
35 37
|
sylib |
|
| 39 |
19
|
ffnd |
|
| 40 |
|
sdrgrcl |
|
| 41 |
4 40
|
syl |
|
| 42 |
41
|
drngringd |
|
| 43 |
|
eqid |
|
| 44 |
16 43
|
ring0cl |
|
| 45 |
42 44
|
syl |
|
| 46 |
45
|
ne0d |
|
| 47 |
|
fconst5 |
|
| 48 |
39 46 47
|
syl2anc |
|
| 49 |
48
|
adantr |
|
| 50 |
38 49
|
mpbid |
|
| 51 |
5 50
|
mteqand |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
13 52 53
|
0unit |
|
| 55 |
11 54
|
syl |
|
| 56 |
55
|
necon3bbid |
|
| 57 |
51 56
|
mpbird |
|
| 58 |
|
ssdifsn |
|
| 59 |
15 57 58
|
sylanbrc |
|
| 60 |
39
|
fnfund |
|
| 61 |
1
|
ressbasss2 |
|
| 62 |
|
eldifi |
|
| 63 |
61 62
|
sselid |
|
| 64 |
|
fvelima |
|
| 65 |
60 63 64
|
syl2an |
|
| 66 |
|
simprr |
|
| 67 |
|
simprl |
|
| 68 |
67
|
fvresd |
|
| 69 |
|
eqid |
|
| 70 |
69
|
resrhm |
|
| 71 |
3 7 70
|
syl2anc |
|
| 72 |
|
df-ima |
|
| 73 |
|
eqimss2 |
|
| 74 |
72 73
|
mp1i |
|
| 75 |
1
|
resrhm2b |
|
| 76 |
9 74 75
|
syl2anc |
|
| 77 |
71 76
|
mpbid |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
|
eldifsni |
|
| 80 |
79
|
ad2antlr |
|
| 81 |
68
|
adantr |
|
| 82 |
|
simpr |
|
| 83 |
82
|
fveq2d |
|
| 84 |
69 43
|
subrg0 |
|
| 85 |
7 84
|
syl |
|
| 86 |
85
|
fveq2d |
|
| 87 |
|
rhmghm |
|
| 88 |
|
eqid |
|
| 89 |
88 52
|
ghmid |
|
| 90 |
77 87 89
|
3syl |
|
| 91 |
86 90
|
eqtrd |
|
| 92 |
91
|
ad3antrrr |
|
| 93 |
83 92
|
eqtrd |
|
| 94 |
|
simplrr |
|
| 95 |
81 93 94
|
3eqtr3rd |
|
| 96 |
80 95
|
mteqand |
|
| 97 |
4
|
ad2antrr |
|
| 98 |
|
eqid |
|
| 99 |
69 43 98
|
sdrgunit |
|
| 100 |
97 99
|
syl |
|
| 101 |
67 96 100
|
mpbir2and |
|
| 102 |
|
elrhmunit |
|
| 103 |
78 101 102
|
syl2anc |
|
| 104 |
68 103
|
eqeltrrd |
|
| 105 |
66 104
|
eqeltrrd |
|
| 106 |
65 105
|
rexlimddv |
|
| 107 |
59 106
|
eqelssd |
|
| 108 |
12 13 52
|
isdrng |
|
| 109 |
11 107 108
|
sylanbrc |
|