Metamath Proof Explorer


Theorem imadrhmcl

Description: The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025)

Ref Expression
Hypotheses imadrhmcl.r R=N𝑠FS
imadrhmcl.0 0˙=0N
imadrhmcl.h φFMRingHomN
imadrhmcl.s φSSubDRingM
imadrhmcl.1 φranF0˙
Assertion imadrhmcl φRDivRing

Proof

Step Hyp Ref Expression
1 imadrhmcl.r R=N𝑠FS
2 imadrhmcl.0 0˙=0N
3 imadrhmcl.h φFMRingHomN
4 imadrhmcl.s φSSubDRingM
5 imadrhmcl.1 φranF0˙
6 sdrgsubrg SSubDRingMSSubRingM
7 4 6 syl φSSubRingM
8 rhmima FMRingHomNSSubRingMFSSubRingN
9 3 7 8 syl2anc φFSSubRingN
10 1 subrgring FSSubRingNRRing
11 9 10 syl φRRing
12 eqid BaseR=BaseR
13 eqid UnitR=UnitR
14 12 13 unitss UnitRBaseR
15 14 a1i φUnitRBaseR
16 eqid BaseM=BaseM
17 eqid BaseN=BaseN
18 16 17 rhmf FMRingHomNF:BaseMBaseN
19 3 18 syl φF:BaseMBaseN
20 19 adantr φ1R=0RF:BaseMBaseN
21 rhmrcl2 FMRingHomNNRing
22 3 21 syl φNRing
23 simpr φ1R=0R1R=0R
24 eqid 1N=1N
25 1 24 subrg1 FSSubRingN1N=1R
26 9 25 syl φ1N=1R
27 26 adantr φ1R=0R1N=1R
28 1 2 subrg0 FSSubRingN0˙=0R
29 9 28 syl φ0˙=0R
30 29 adantr φ1R=0R0˙=0R
31 23 27 30 3eqtr4rd φ1R=0R0˙=1N
32 17 2 24 01eq0ring NRing0˙=1NBaseN=0˙
33 22 31 32 syl2an2r φ1R=0RBaseN=0˙
34 33 feq3d φ1R=0RF:BaseMBaseNF:BaseM0˙
35 20 34 mpbid φ1R=0RF:BaseM0˙
36 2 fvexi 0˙V
37 36 fconst2 F:BaseM0˙F=BaseM×0˙
38 35 37 sylib φ1R=0RF=BaseM×0˙
39 19 ffnd φFFnBaseM
40 sdrgrcl SSubDRingMMDivRing
41 4 40 syl φMDivRing
42 41 drngringd φMRing
43 eqid 0M=0M
44 16 43 ring0cl MRing0MBaseM
45 42 44 syl φ0MBaseM
46 45 ne0d φBaseM
47 fconst5 FFnBaseMBaseMF=BaseM×0˙ranF=0˙
48 39 46 47 syl2anc φF=BaseM×0˙ranF=0˙
49 48 adantr φ1R=0RF=BaseM×0˙ranF=0˙
50 38 49 mpbid φ1R=0RranF=0˙
51 5 50 mteqand φ1R0R
52 eqid 0R=0R
53 eqid 1R=1R
54 13 52 53 0unit RRing0RUnitR1R=0R
55 11 54 syl φ0RUnitR1R=0R
56 55 necon3bbid φ¬0RUnitR1R0R
57 51 56 mpbird φ¬0RUnitR
58 ssdifsn UnitRBaseR0RUnitRBaseR¬0RUnitR
59 15 57 58 sylanbrc φUnitRBaseR0R
60 39 fnfund φFunF
61 1 ressbasss2 BaseRFS
62 eldifi xBaseR0RxBaseR
63 61 62 sselid xBaseR0RxFS
64 fvelima FunFxFSaSFa=x
65 60 63 64 syl2an φxBaseR0RaSFa=x
66 simprr φxBaseR0RaSFa=xFa=x
67 simprl φxBaseR0RaSFa=xaS
68 67 fvresd φxBaseR0RaSFa=xFSa=Fa
69 eqid M𝑠S=M𝑠S
70 69 resrhm FMRingHomNSSubRingMFSM𝑠SRingHomN
71 3 7 70 syl2anc φFSM𝑠SRingHomN
72 df-ima FS=ranFS
73 eqimss2 FS=ranFSranFSFS
74 72 73 mp1i φranFSFS
75 1 resrhm2b FSSubRingNranFSFSFSM𝑠SRingHomNFSM𝑠SRingHomR
76 9 74 75 syl2anc φFSM𝑠SRingHomNFSM𝑠SRingHomR
77 71 76 mpbid φFSM𝑠SRingHomR
78 77 ad2antrr φxBaseR0RaSFa=xFSM𝑠SRingHomR
79 eldifsni xBaseR0Rx0R
80 79 ad2antlr φxBaseR0RaSFa=xx0R
81 68 adantr φxBaseR0RaSFa=xa=0MFSa=Fa
82 simpr φxBaseR0RaSFa=xa=0Ma=0M
83 82 fveq2d φxBaseR0RaSFa=xa=0MFSa=FS0M
84 69 43 subrg0 SSubRingM0M=0M𝑠S
85 7 84 syl φ0M=0M𝑠S
86 85 fveq2d φFS0M=FS0M𝑠S
87 rhmghm FSM𝑠SRingHomRFSM𝑠SGrpHomR
88 eqid 0M𝑠S=0M𝑠S
89 88 52 ghmid FSM𝑠SGrpHomRFS0M𝑠S=0R
90 77 87 89 3syl φFS0M𝑠S=0R
91 86 90 eqtrd φFS0M=0R
92 91 ad3antrrr φxBaseR0RaSFa=xa=0MFS0M=0R
93 83 92 eqtrd φxBaseR0RaSFa=xa=0MFSa=0R
94 simplrr φxBaseR0RaSFa=xa=0MFa=x
95 81 93 94 3eqtr3rd φxBaseR0RaSFa=xa=0Mx=0R
96 80 95 mteqand φxBaseR0RaSFa=xa0M
97 4 ad2antrr φxBaseR0RaSFa=xSSubDRingM
98 eqid UnitM𝑠S=UnitM𝑠S
99 69 43 98 sdrgunit SSubDRingMaUnitM𝑠SaSa0M
100 97 99 syl φxBaseR0RaSFa=xaUnitM𝑠SaSa0M
101 67 96 100 mpbir2and φxBaseR0RaSFa=xaUnitM𝑠S
102 elrhmunit FSM𝑠SRingHomRaUnitM𝑠SFSaUnitR
103 78 101 102 syl2anc φxBaseR0RaSFa=xFSaUnitR
104 68 103 eqeltrrd φxBaseR0RaSFa=xFaUnitR
105 66 104 eqeltrrd φxBaseR0RaSFa=xxUnitR
106 65 105 rexlimddv φxBaseR0RxUnitR
107 59 106 eqelssd φUnitR=BaseR0R
108 12 13 52 isdrng RDivRingRRingUnitR=BaseR0R
109 11 107 108 sylanbrc φRDivRing