Metamath Proof Explorer


Theorem invfuc

Description: If V ( x ) is an inverse to U ( x ) for each x , and U is a natural transformation, then V is also a natural transformation, and they are inverse in the functor category. (Contributed by Mario Carneiro, 28-Jan-2017)

Ref Expression
Hypotheses fuciso.q Q=CFuncCatD
fuciso.b B=BaseC
fuciso.n N=CNatD
fuciso.f φFCFuncD
fuciso.g φGCFuncD
fucinv.i I=InvQ
fucinv.j J=InvD
invfuc.u φUFNG
invfuc.v φxBUx1stFxJ1stGxX
Assertion invfuc φUFIGxBX

Proof

Step Hyp Ref Expression
1 fuciso.q Q=CFuncCatD
2 fuciso.b B=BaseC
3 fuciso.n N=CNatD
4 fuciso.f φFCFuncD
5 fuciso.g φGCFuncD
6 fucinv.i I=InvQ
7 fucinv.j J=InvD
8 invfuc.u φUFNG
9 invfuc.v φxBUx1stFxJ1stGxX
10 eqid BaseD=BaseD
11 funcrcl FCFuncDCCatDCat
12 4 11 syl φCCatDCat
13 12 simprd φDCat
14 13 adantr φxBDCat
15 relfunc RelCFuncD
16 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
17 15 4 16 sylancr φ1stFCFuncD2ndF
18 2 10 17 funcf1 φ1stF:BBaseD
19 18 ffvelcdmda φxB1stFxBaseD
20 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
21 15 5 20 sylancr φ1stGCFuncD2ndG
22 2 10 21 funcf1 φ1stG:BBaseD
23 22 ffvelcdmda φxB1stGxBaseD
24 eqid HomD=HomD
25 10 7 14 19 23 24 invss φxB1stFxJ1stGx1stFxHomD1stGx×1stGxHomD1stFx
26 25 ssbrd φxBUx1stFxJ1stGxXUx1stFxHomD1stGx×1stGxHomD1stFxX
27 9 26 mpd φxBUx1stFxHomD1stGx×1stGxHomD1stFxX
28 brxp Ux1stFxHomD1stGx×1stGxHomD1stFxXUx1stFxHomD1stGxX1stGxHomD1stFx
29 28 simprbi Ux1stFxHomD1stGx×1stGxHomD1stFxXX1stGxHomD1stFx
30 27 29 syl φxBX1stGxHomD1stFx
31 30 ralrimiva φxBX1stGxHomD1stFx
32 2 fvexi BV
33 mptelixpg BVxBXxB1stGxHomD1stFxxBX1stGxHomD1stFx
34 32 33 ax-mp xBXxB1stGxHomD1stFxxBX1stGxHomD1stFx
35 31 34 sylibr φxBXxB1stGxHomD1stFx
36 fveq2 x=y1stGx=1stGy
37 fveq2 x=y1stFx=1stFy
38 36 37 oveq12d x=y1stGxHomD1stFx=1stGyHomD1stFy
39 38 cbvixpv xB1stGxHomD1stFx=yB1stGyHomD1stFy
40 35 39 eleqtrdi φxBXyB1stGyHomD1stFy
41 simpr2 φyBzBfyHomCzzB
42 simpr φxBxB
43 eqid xBX=xBX
44 43 fvmpt2 xBX1stGxHomD1stFxxBXx=X
45 42 30 44 syl2anc φxBxBXx=X
46 9 45 breqtrrd φxBUx1stFxJ1stGxxBXx
47 46 ralrimiva φxBUx1stFxJ1stGxxBXx
48 47 adantr φyBzBfyHomCzxBUx1stFxJ1stGxxBXx
49 nfcv _xUz
50 nfcv _x1stFzJ1stGz
51 nffvmpt1 _xxBXz
52 49 50 51 nfbr xUz1stFzJ1stGzxBXz
53 fveq2 x=zUx=Uz
54 fveq2 x=z1stFx=1stFz
55 fveq2 x=z1stGx=1stGz
56 54 55 oveq12d x=z1stFxJ1stGx=1stFzJ1stGz
57 fveq2 x=zxBXx=xBXz
58 53 56 57 breq123d x=zUx1stFxJ1stGxxBXxUz1stFzJ1stGzxBXz
59 52 58 rspc zBxBUx1stFxJ1stGxxBXxUz1stFzJ1stGzxBXz
60 41 48 59 sylc φyBzBfyHomCzUz1stFzJ1stGzxBXz
61 13 adantr φyBzBfyHomCzDCat
62 18 adantr φyBzBfyHomCz1stF:BBaseD
63 62 41 ffvelcdmd φyBzBfyHomCz1stFzBaseD
64 22 adantr φyBzBfyHomCz1stG:BBaseD
65 64 41 ffvelcdmd φyBzBfyHomCz1stGzBaseD
66 eqid SectD=SectD
67 10 7 61 63 65 66 isinv φyBzBfyHomCzUz1stFzJ1stGzxBXzUz1stFzSectD1stGzxBXzxBXz1stGzSectD1stFzUz
68 60 67 mpbid φyBzBfyHomCzUz1stFzSectD1stGzxBXzxBXz1stGzSectD1stFzUz
69 68 simpld φyBzBfyHomCzUz1stFzSectD1stGzxBXz
70 eqid compD=compD
71 eqid IdD=IdD
72 10 24 70 71 66 61 63 65 issect φyBzBfyHomCzUz1stFzSectD1stGzxBXzUz1stFzHomD1stGzxBXz1stGzHomD1stFzxBXz1stFz1stGzcompD1stFzUz=IdD1stFz
73 69 72 mpbid φyBzBfyHomCzUz1stFzHomD1stGzxBXz1stGzHomD1stFzxBXz1stFz1stGzcompD1stFzUz=IdD1stFz
74 73 simp3d φyBzBfyHomCzxBXz1stFz1stGzcompD1stFzUz=IdD1stFz
75 74 oveq1d φyBzBfyHomCzxBXz1stFz1stGzcompD1stFzUz1stFy1stFzcompD1stFzy2ndFzf=IdD1stFz1stFy1stFzcompD1stFzy2ndFzf
76 simpr1 φyBzBfyHomCzyB
77 62 76 ffvelcdmd φyBzBfyHomCz1stFyBaseD
78 eqid HomC=HomC
79 17 adantr φyBzBfyHomCz1stFCFuncD2ndF
80 2 78 24 79 76 41 funcf2 φyBzBfyHomCzy2ndFz:yHomCz1stFyHomD1stFz
81 simpr3 φyBzBfyHomCzfyHomCz
82 80 81 ffvelcdmd φyBzBfyHomCzy2ndFzf1stFyHomD1stFz
83 10 24 71 61 77 70 63 82 catlid φyBzBfyHomCzIdD1stFz1stFy1stFzcompD1stFzy2ndFzf=y2ndFzf
84 75 83 eqtr2d φyBzBfyHomCzy2ndFzf=xBXz1stFz1stGzcompD1stFzUz1stFy1stFzcompD1stFzy2ndFzf
85 8 adantr φyBzBfyHomCzUFNG
86 3 85 nat1st2nd φyBzBfyHomCzU1stF2ndFN1stG2ndG
87 3 86 2 24 41 natcl φyBzBfyHomCzUz1stFzHomD1stGz
88 73 simp2d φyBzBfyHomCzxBXz1stGzHomD1stFz
89 10 24 70 61 77 63 65 82 87 63 88 catass φyBzBfyHomCzxBXz1stFz1stGzcompD1stFzUz1stFy1stFzcompD1stFzy2ndFzf=xBXz1stFy1stGzcompD1stFzUz1stFy1stFzcompD1stGzy2ndFzf
90 3 86 2 78 70 76 41 81 nati φyBzBfyHomCzUz1stFy1stFzcompD1stGzy2ndFzf=y2ndGzf1stFy1stGycompD1stGzUy
91 90 oveq2d φyBzBfyHomCzxBXz1stFy1stGzcompD1stFzUz1stFy1stFzcompD1stGzy2ndFzf=xBXz1stFy1stGzcompD1stFzy2ndGzf1stFy1stGycompD1stGzUy
92 84 89 91 3eqtrd φyBzBfyHomCzy2ndFzf=xBXz1stFy1stGzcompD1stFzy2ndGzf1stFy1stGycompD1stGzUy
93 92 oveq1d φyBzBfyHomCzy2ndFzf1stGy1stFycompD1stFzxBXy=xBXz1stFy1stGzcompD1stFzy2ndGzf1stFy1stGycompD1stGzUy1stGy1stFycompD1stFzxBXy
94 64 76 ffvelcdmd φyBzBfyHomCz1stGyBaseD
95 nfcv _xUy
96 nfcv _x1stFyJ1stGy
97 nffvmpt1 _xxBXy
98 95 96 97 nfbr xUy1stFyJ1stGyxBXy
99 fveq2 x=yUx=Uy
100 37 36 oveq12d x=y1stFxJ1stGx=1stFyJ1stGy
101 fveq2 x=yxBXx=xBXy
102 99 100 101 breq123d x=yUx1stFxJ1stGxxBXxUy1stFyJ1stGyxBXy
103 98 102 rspc yBxBUx1stFxJ1stGxxBXxUy1stFyJ1stGyxBXy
104 76 48 103 sylc φyBzBfyHomCzUy1stFyJ1stGyxBXy
105 10 7 61 77 94 66 isinv φyBzBfyHomCzUy1stFyJ1stGyxBXyUy1stFySectD1stGyxBXyxBXy1stGySectD1stFyUy
106 104 105 mpbid φyBzBfyHomCzUy1stFySectD1stGyxBXyxBXy1stGySectD1stFyUy
107 106 simprd φyBzBfyHomCzxBXy1stGySectD1stFyUy
108 10 24 70 71 66 61 94 77 issect φyBzBfyHomCzxBXy1stGySectD1stFyUyxBXy1stGyHomD1stFyUy1stFyHomD1stGyUy1stGy1stFycompD1stGyxBXy=IdD1stGy
109 107 108 mpbid φyBzBfyHomCzxBXy1stGyHomD1stFyUy1stFyHomD1stGyUy1stGy1stFycompD1stGyxBXy=IdD1stGy
110 109 simp1d φyBzBfyHomCzxBXy1stGyHomD1stFy
111 109 simp2d φyBzBfyHomCzUy1stFyHomD1stGy
112 21 adantr φyBzBfyHomCz1stGCFuncD2ndG
113 2 78 24 112 76 41 funcf2 φyBzBfyHomCzy2ndGz:yHomCz1stGyHomD1stGz
114 113 81 ffvelcdmd φyBzBfyHomCzy2ndGzf1stGyHomD1stGz
115 10 24 70 61 77 94 65 111 114 catcocl φyBzBfyHomCzy2ndGzf1stFy1stGycompD1stGzUy1stFyHomD1stGz
116 10 24 70 61 94 77 65 110 115 63 88 catass φyBzBfyHomCzxBXz1stFy1stGzcompD1stFzy2ndGzf1stFy1stGycompD1stGzUy1stGy1stFycompD1stFzxBXy=xBXz1stGy1stGzcompD1stFzy2ndGzf1stFy1stGycompD1stGzUy1stGy1stFycompD1stGzxBXy
117 3 86 2 24 76 natcl φyBzBfyHomCzUy1stFyHomD1stGy
118 10 24 70 61 94 77 94 110 117 65 114 catass φyBzBfyHomCzy2ndGzf1stFy1stGycompD1stGzUy1stGy1stFycompD1stGzxBXy=y2ndGzf1stGy1stGycompD1stGzUy1stGy1stFycompD1stGyxBXy
119 109 simp3d φyBzBfyHomCzUy1stGy1stFycompD1stGyxBXy=IdD1stGy
120 119 oveq2d φyBzBfyHomCzy2ndGzf1stGy1stGycompD1stGzUy1stGy1stFycompD1stGyxBXy=y2ndGzf1stGy1stGycompD1stGzIdD1stGy
121 10 24 71 61 94 70 65 114 catrid φyBzBfyHomCzy2ndGzf1stGy1stGycompD1stGzIdD1stGy=y2ndGzf
122 118 120 121 3eqtrd φyBzBfyHomCzy2ndGzf1stFy1stGycompD1stGzUy1stGy1stFycompD1stGzxBXy=y2ndGzf
123 122 oveq2d φyBzBfyHomCzxBXz1stGy1stGzcompD1stFzy2ndGzf1stFy1stGycompD1stGzUy1stGy1stFycompD1stGzxBXy=xBXz1stGy1stGzcompD1stFzy2ndGzf
124 93 116 123 3eqtrrd φyBzBfyHomCzxBXz1stGy1stGzcompD1stFzy2ndGzf=y2ndFzf1stGy1stFycompD1stFzxBXy
125 124 ralrimivvva φyBzBfyHomCzxBXz1stGy1stGzcompD1stFzy2ndGzf=y2ndFzf1stGy1stFycompD1stFzxBXy
126 3 2 78 24 70 5 4 isnat2 φxBXGNFxBXyB1stGyHomD1stFyyBzBfyHomCzxBXz1stGy1stGzcompD1stFzy2ndGzf=y2ndFzf1stGy1stFycompD1stFzxBXy
127 40 125 126 mpbir2and φxBXGNF
128 nfv yUx1stFxJ1stGxxBXx
129 128 98 102 cbvralw xBUx1stFxJ1stGxxBXxyBUy1stFyJ1stGyxBXy
130 47 129 sylib φyBUy1stFyJ1stGyxBXy
131 1 2 3 4 5 6 7 fucinv φUFIGxBXUFNGxBXGNFyBUy1stFyJ1stGyxBXy
132 8 127 130 131 mpbir3and φUFIGxBX