Metamath Proof Explorer


Theorem isdrngd

Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a left-inverse I ( x ) . See isdrngrd for the characterization using right-inverses. (Contributed by NM, 2-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)

Ref Expression
Hypotheses isdrngd.b φB=BaseR
isdrngd.t φ·˙=R
isdrngd.z φ0˙=0R
isdrngd.u φ1˙=1R
isdrngd.r φRRing
isdrngd.n φxBx0˙yBy0˙x·˙y0˙
isdrngd.o φ1˙0˙
isdrngd.i φxBx0˙IB
isdrngd.k φxBx0˙I·˙x=1˙
Assertion isdrngd φRDivRing

Proof

Step Hyp Ref Expression
1 isdrngd.b φB=BaseR
2 isdrngd.t φ·˙=R
3 isdrngd.z φ0˙=0R
4 isdrngd.u φ1˙=1R
5 isdrngd.r φRRing
6 isdrngd.n φxBx0˙yBy0˙x·˙y0˙
7 isdrngd.o φ1˙0˙
8 isdrngd.i φxBx0˙IB
9 isdrngd.k φxBx0˙I·˙x=1˙
10 difss B0˙B
11 10 1 sseqtrid φB0˙BaseR
12 eqid mulGrpR𝑠B0˙=mulGrpR𝑠B0˙
13 eqid mulGrpR=mulGrpR
14 eqid BaseR=BaseR
15 13 14 mgpbas BaseR=BasemulGrpR
16 12 15 ressbas2 B0˙BaseRB0˙=BasemulGrpR𝑠B0˙
17 11 16 syl φB0˙=BasemulGrpR𝑠B0˙
18 fvex BaseRV
19 1 18 eqeltrdi φBV
20 difexg BVB0˙V
21 eqid R=R
22 13 21 mgpplusg R=+mulGrpR
23 12 22 ressplusg B0˙VR=+mulGrpR𝑠B0˙
24 19 20 23 3syl φR=+mulGrpR𝑠B0˙
25 2 24 eqtrd φ·˙=+mulGrpR𝑠B0˙
26 eldifsn xB0˙xBx0˙
27 eldifsn yB0˙yBy0˙
28 14 21 ringcl RRingxBaseRyBaseRxRyBaseR
29 5 28 syl3an1 φxBaseRyBaseRxRyBaseR
30 29 3expib φxBaseRyBaseRxRyBaseR
31 1 eleq2d φxBxBaseR
32 1 eleq2d φyByBaseR
33 31 32 anbi12d φxByBxBaseRyBaseR
34 2 oveqd φx·˙y=xRy
35 34 1 eleq12d φx·˙yBxRyBaseR
36 30 33 35 3imtr4d φxByBx·˙yB
37 36 3impib φxByBx·˙yB
38 37 3adant2r φxBx0˙yBx·˙yB
39 38 3adant3r φxBx0˙yBy0˙x·˙yB
40 eldifsn x·˙yB0˙x·˙yBx·˙y0˙
41 39 6 40 sylanbrc φxBx0˙yBy0˙x·˙yB0˙
42 27 41 syl3an3b φxBx0˙yB0˙x·˙yB0˙
43 26 42 syl3an2b φxB0˙yB0˙x·˙yB0˙
44 14 21 ringass RRingxBaseRyBaseRzBaseRxRyRz=xRyRz
45 44 ex RRingxBaseRyBaseRzBaseRxRyRz=xRyRz
46 5 45 syl φxBaseRyBaseRzBaseRxRyRz=xRyRz
47 1 eleq2d φzBzBaseR
48 31 32 47 3anbi123d φxByBzBxBaseRyBaseRzBaseR
49 eqidd φz=z
50 2 34 49 oveq123d φx·˙y·˙z=xRyRz
51 eqidd φx=x
52 2 oveqd φy·˙z=yRz
53 2 51 52 oveq123d φx·˙y·˙z=xRyRz
54 50 53 eqeq12d φx·˙y·˙z=x·˙y·˙zxRyRz=xRyRz
55 46 48 54 3imtr4d φxByBzBx·˙y·˙z=x·˙y·˙z
56 eldifi xB0˙xB
57 eldifi yB0˙yB
58 eldifi zB0˙zB
59 56 57 58 3anim123i xB0˙yB0˙zB0˙xByBzB
60 55 59 impel φxB0˙yB0˙zB0˙x·˙y·˙z=x·˙y·˙z
61 eqid 1R=1R
62 14 61 ringidcl RRing1RBaseR
63 5 62 syl φ1RBaseR
64 63 4 1 3eltr4d φ1˙B
65 eldifsn 1˙B0˙1˙B1˙0˙
66 64 7 65 sylanbrc φ1˙B0˙
67 14 21 61 ringlidm RRingxBaseR1RRx=x
68 67 ex RRingxBaseR1RRx=x
69 5 68 syl φxBaseR1RRx=x
70 2 4 51 oveq123d φ1˙·˙x=1RRx
71 70 eqeq1d φ1˙·˙x=x1RRx=x
72 69 31 71 3imtr4d φxB1˙·˙x=x
73 72 imp φxB1˙·˙x=x
74 73 adantrr φxBx0˙1˙·˙x=x
75 26 74 sylan2b φxB0˙1˙·˙x=x
76 7 adantr φxBx0˙1˙0˙
77 simpr φxBx0˙I=0˙I=0˙
78 77 oveq1d φxBx0˙I=0˙I·˙x=0˙·˙x
79 9 adantr φxBx0˙I=0˙I·˙x=1˙
80 31 biimpa φxBxBaseR
81 80 adantrr φxBx0˙xBaseR
82 eqid 0R=0R
83 14 21 82 ringlz RRingxBaseR0RRx=0R
84 5 81 83 syl2an2r φxBx0˙0RRx=0R
85 2 3 51 oveq123d φ0˙·˙x=0RRx
86 85 adantr φxBx0˙0˙·˙x=0RRx
87 3 adantr φxBx0˙0˙=0R
88 84 86 87 3eqtr4d φxBx0˙0˙·˙x=0˙
89 88 adantr φxBx0˙I=0˙0˙·˙x=0˙
90 78 79 89 3eqtr3d φxBx0˙I=0˙1˙=0˙
91 76 90 mteqand φxBx0˙I0˙
92 eldifsn IB0˙IBI0˙
93 8 91 92 sylanbrc φxBx0˙IB0˙
94 26 93 sylan2b φxB0˙IB0˙
95 26 9 sylan2b φxB0˙I·˙x=1˙
96 17 25 43 60 66 75 94 95 isgrpd φmulGrpR𝑠B0˙Grp
97 3 sneqd φ0˙=0R
98 1 97 difeq12d φB0˙=BaseR0R
99 98 oveq2d φmulGrpR𝑠B0˙=mulGrpR𝑠BaseR0R
100 99 eleq1d φmulGrpR𝑠B0˙GrpmulGrpR𝑠BaseR0RGrp
101 100 anbi2d φRRingmulGrpR𝑠B0˙GrpRRingmulGrpR𝑠BaseR0RGrp
102 5 96 101 mpbi2and φRRingmulGrpR𝑠BaseR0RGrp
103 eqid mulGrpR𝑠BaseR0R=mulGrpR𝑠BaseR0R
104 14 82 103 isdrng2 RDivRingRRingmulGrpR𝑠BaseR0RGrp
105 102 104 sylibr φRDivRing