Metamath Proof Explorer


Theorem iseraltlem3

Description: Lemma for iseralt . From iseraltlem2 , we have ( -u 1 ^ n ) x. S ( n + 2 k ) <_ ( -u 1 ^ n ) x. S ( n ) and ( -u 1 ^ n ) x. S ( n + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) , and we also have ( -u 1 ^ n ) x. S ( n + 1 ) = ( -u 1 ^ n ) x. S ( n ) - G ( n + 1 ) for each n by the definition of the partial sum S , so combining the inequalities we get ( -u 1 ^ n ) x. S ( n ) - G ( n + 1 ) = ( -u 1 ^ n ) x. S ( n + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) = ( -u 1 ^ n ) x. S ( n + 2 k ) - G ( n + 2 k + 1 ) <_ ( -u 1 ^ n ) x. S ( n + 2 k ) <_ ( -u 1 ^ n ) x. S ( n ) <_ ( -u 1 ^ n ) x. S ( n ) + G ( n + 1 ) , so | ( -u 1 ^ n ) x. S ( n + 2 k + 1 ) - ( -u 1 ^ n ) x. S ( n ) | = | S ( n + 2 k + 1 ) - S ( n ) | <_ G ( n + 1 ) and | ( -u 1 ^ n ) x. S ( n + 2 k ) - ( -u 1 ^ n ) x. S ( n ) | = | S ( n + 2 k ) - S ( n ) | <_ G ( n + 1 ) . Thus, both even and odd partial sums are Cauchy if G converges to 0 . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses iseralt.1 Z=M
iseralt.2 φM
iseralt.3 φG:Z
iseralt.4 φkZGk+1Gk
iseralt.5 φG0
iseralt.6 φkZFk=1kGk
Assertion iseraltlem3 φNZK0seqM+FN+2KseqM+FNGN+1seqM+FN+2K+1seqM+FNGN+1

Proof

Step Hyp Ref Expression
1 iseralt.1 Z=M
2 iseralt.2 φM
3 iseralt.3 φG:Z
4 iseralt.4 φkZGk+1Gk
5 iseralt.5 φG0
6 iseralt.6 φkZFk=1kGk
7 neg1rr 1
8 7 a1i φNZK01
9 neg1ne0 10
10 9 a1i φNZK010
11 uzssz M
12 1 11 eqsstri Z
13 simp2 φNZK0NZ
14 12 13 sselid φNZK0N
15 8 10 14 reexpclzd φNZK01N
16 15 recnd φNZK01N
17 7 a1i φkZ1
18 9 a1i φkZ10
19 simpr φkZkZ
20 12 19 sselid φkZk
21 17 18 20 reexpclzd φkZ1k
22 3 ffvelcdmda φkZGk
23 21 22 remulcld φkZ1kGk
24 6 23 eqeltrd φkZFk
25 1 2 24 serfre φseqM+F:Z
26 25 3ad2ant1 φNZK0seqM+F:Z
27 13 1 eleqtrdi φNZK0NM
28 2nn0 20
29 simp3 φNZK0K0
30 nn0mulcl 20K02K0
31 28 29 30 sylancr φNZK02K0
32 uzaddcl NM2K0N+2KM
33 27 31 32 syl2anc φNZK0N+2KM
34 33 1 eleqtrrdi φNZK0N+2KZ
35 26 34 ffvelcdmd φNZK0seqM+FN+2K
36 35 recnd φNZK0seqM+FN+2K
37 26 13 ffvelcdmd φNZK0seqM+FN
38 37 recnd φNZK0seqM+FN
39 16 36 38 subdid φNZK01NseqM+FN+2KseqM+FN=1NseqM+FN+2K1NseqM+FN
40 39 fveq2d φNZK01NseqM+FN+2KseqM+FN=1NseqM+FN+2K1NseqM+FN
41 35 37 resubcld φNZK0seqM+FN+2KseqM+FN
42 41 recnd φNZK0seqM+FN+2KseqM+FN
43 16 42 absmuld φNZK01NseqM+FN+2KseqM+FN=1NseqM+FN+2KseqM+FN
44 40 43 eqtr3d φNZK01NseqM+FN+2K1NseqM+FN=1NseqM+FN+2KseqM+FN
45 8 recnd φNZK01
46 absexpz 110N1N=1N
47 45 10 14 46 syl3anc φNZK01N=1N
48 ax-1cn 1
49 48 absnegi 1=1
50 abs1 1=1
51 49 50 eqtri 1=1
52 51 oveq1i 1N=1N
53 1exp N1N=1
54 14 53 syl φNZK01N=1
55 52 54 eqtrid φNZK01N=1
56 47 55 eqtrd φNZK01N=1
57 56 oveq1d φNZK01NseqM+FN+2KseqM+FN=1seqM+FN+2KseqM+FN
58 42 abscld φNZK0seqM+FN+2KseqM+FN
59 58 recnd φNZK0seqM+FN+2KseqM+FN
60 59 mullidd φNZK01seqM+FN+2KseqM+FN=seqM+FN+2KseqM+FN
61 44 57 60 3eqtrd φNZK01NseqM+FN+2K1NseqM+FN=seqM+FN+2KseqM+FN
62 15 37 remulcld φNZK01NseqM+FN
63 3 3ad2ant1 φNZK0G:Z
64 1 peano2uzs NZN+1Z
65 64 3ad2ant2 φNZK0N+1Z
66 63 65 ffvelcdmd φNZK0GN+1
67 62 66 resubcld φNZK01NseqM+FNGN+1
68 1 peano2uzs N+2KZN+2K+1Z
69 34 68 syl φNZK0N+2K+1Z
70 26 69 ffvelcdmd φNZK0seqM+FN+2K+1
71 15 70 remulcld φNZK01NseqM+FN+2K+1
72 15 35 remulcld φNZK01NseqM+FN+2K
73 seqp1 NMseqM+FN+1=seqM+FN+FN+1
74 27 73 syl φNZK0seqM+FN+1=seqM+FN+FN+1
75 fveq2 k=N+1Fk=FN+1
76 oveq2 k=N+11k=1N+1
77 fveq2 k=N+1Gk=GN+1
78 76 77 oveq12d k=N+11kGk=1N+1GN+1
79 75 78 eqeq12d k=N+1Fk=1kGkFN+1=1N+1GN+1
80 6 ralrimiva φkZFk=1kGk
81 80 3ad2ant1 φNZK0kZFk=1kGk
82 79 81 65 rspcdva φNZK0FN+1=1N+1GN+1
83 82 oveq2d φNZK0seqM+FN+FN+1=seqM+FN+1N+1GN+1
84 45 10 14 expp1zd φNZK01N+1=1N-1
85 neg1cn 1
86 mulcom 1N11N-1=-11N
87 16 85 86 sylancl φNZK01N-1=-11N
88 16 mulm1d φNZK0-11N=1N
89 84 87 88 3eqtrd φNZK01N+1=1N
90 89 oveq1d φNZK01N+1GN+1=1NGN+1
91 66 recnd φNZK0GN+1
92 16 91 mulneg1d φNZK01NGN+1=1NGN+1
93 90 92 eqtrd φNZK01N+1GN+1=1NGN+1
94 93 oveq2d φNZK0seqM+FN+1N+1GN+1=seqM+FN+1NGN+1
95 74 83 94 3eqtrd φNZK0seqM+FN+1=seqM+FN+1NGN+1
96 15 66 remulcld φNZK01NGN+1
97 96 recnd φNZK01NGN+1
98 38 97 negsubd φNZK0seqM+FN+1NGN+1=seqM+FN1NGN+1
99 95 98 eqtrd φNZK0seqM+FN+1=seqM+FN1NGN+1
100 99 oveq2d φNZK01NseqM+FN+1=1NseqM+FN1NGN+1
101 16 38 97 subdid φNZK01NseqM+FN1NGN+1=1NseqM+FN1N1NGN+1
102 14 zcnd φNZK0N
103 102 2timesd φNZK02 N=N+N
104 103 oveq2d φNZK012 N=1N+N
105 2z 2
106 105 a1i φNZK02
107 expmulz 1102N12 N=-12N
108 45 10 106 14 107 syl22anc φNZK012 N=-12N
109 104 108 eqtr3d φNZK01N+N=-12N
110 neg1sqe1 12=1
111 110 oveq1i -12N=1N
112 109 111 eqtrdi φNZK01N+N=1N
113 expaddz 110NN1N+N=1N1N
114 45 10 14 14 113 syl22anc φNZK01N+N=1N1N
115 112 114 54 3eqtr3d φNZK01N1N=1
116 115 oveq1d φNZK01N1NGN+1=1GN+1
117 16 16 91 mulassd φNZK01N1NGN+1=1N1NGN+1
118 91 mullidd φNZK01GN+1=GN+1
119 116 117 118 3eqtr3d φNZK01N1NGN+1=GN+1
120 119 oveq2d φNZK01NseqM+FN1N1NGN+1=1NseqM+FNGN+1
121 100 101 120 3eqtrd φNZK01NseqM+FN+1=1NseqM+FNGN+1
122 1 2 3 4 5 6 iseraltlem2 φN+1ZK01N+1seqM+FN+1+2K1N+1seqM+FN+1
123 64 122 syl3an2 φNZK01N+1seqM+FN+1+2K1N+1seqM+FN+1
124 1cnd φNZK01
125 31 nn0cnd φNZK02K
126 102 124 125 add32d φNZK0N+1+2K=N+2K+1
127 126 fveq2d φNZK0seqM+FN+1+2K=seqM+FN+2K+1
128 89 127 oveq12d φNZK01N+1seqM+FN+1+2K=1NseqM+FN+2K+1
129 89 oveq1d φNZK01N+1seqM+FN+1=1NseqM+FN+1
130 123 128 129 3brtr3d φNZK01NseqM+FN+2K+11NseqM+FN+1
131 70 recnd φNZK0seqM+FN+2K+1
132 16 131 mulneg1d φNZK01NseqM+FN+2K+1=1NseqM+FN+2K+1
133 26 65 ffvelcdmd φNZK0seqM+FN+1
134 133 recnd φNZK0seqM+FN+1
135 16 134 mulneg1d φNZK01NseqM+FN+1=1NseqM+FN+1
136 130 132 135 3brtr3d φNZK01NseqM+FN+2K+11NseqM+FN+1
137 15 133 remulcld φNZK01NseqM+FN+1
138 137 71 lenegd φNZK01NseqM+FN+11NseqM+FN+2K+11NseqM+FN+2K+11NseqM+FN+1
139 136 138 mpbird φNZK01NseqM+FN+11NseqM+FN+2K+1
140 121 139 eqbrtrrd φNZK01NseqM+FNGN+11NseqM+FN+2K+1
141 seqp1 N+2KMseqM+FN+2K+1=seqM+FN+2K+FN+2K+1
142 33 141 syl φNZK0seqM+FN+2K+1=seqM+FN+2K+FN+2K+1
143 fveq2 k=N+2K+1Fk=FN+2K+1
144 oveq2 k=N+2K+11k=1N+2K+1
145 fveq2 k=N+2K+1Gk=GN+2K+1
146 144 145 oveq12d k=N+2K+11kGk=1N+2K+1GN+2K+1
147 143 146 eqeq12d k=N+2K+1Fk=1kGkFN+2K+1=1N+2K+1GN+2K+1
148 147 81 69 rspcdva φNZK0FN+2K+1=1N+2K+1GN+2K+1
149 12 65 sselid φNZK0N+1
150 31 nn0zd φNZK02K
151 expaddz 110N+12K1N+1+2K=1N+112K
152 45 10 149 150 151 syl22anc φNZK01N+1+2K=1N+112K
153 29 nn0zd φNZK0K
154 expmulz 1102K12K=-12K
155 45 10 106 153 154 syl22anc φNZK012K=-12K
156 110 oveq1i -12K=1K
157 1exp K1K=1
158 153 157 syl φNZK01K=1
159 156 158 eqtrid φNZK0-12K=1
160 155 159 eqtrd φNZK012K=1
161 89 160 oveq12d φNZK01N+112K=1N1
162 152 161 eqtrd φNZK01N+1+2K=1N1
163 126 oveq2d φNZK01N+1+2K=1N+2K+1
164 16 negcld φNZK01N
165 164 mulridd φNZK01N1=1N
166 162 163 165 3eqtr3d φNZK01N+2K+1=1N
167 166 oveq1d φNZK01N+2K+1GN+2K+1=1NGN+2K+1
168 63 69 ffvelcdmd φNZK0GN+2K+1
169 168 recnd φNZK0GN+2K+1
170 16 169 mulneg1d φNZK01NGN+2K+1=1NGN+2K+1
171 148 167 170 3eqtrd φNZK0FN+2K+1=1NGN+2K+1
172 171 oveq2d φNZK0seqM+FN+2K+FN+2K+1=seqM+FN+2K+1NGN+2K+1
173 15 168 remulcld φNZK01NGN+2K+1
174 173 recnd φNZK01NGN+2K+1
175 36 174 negsubd φNZK0seqM+FN+2K+1NGN+2K+1=seqM+FN+2K1NGN+2K+1
176 142 172 175 3eqtrd φNZK0seqM+FN+2K+1=seqM+FN+2K1NGN+2K+1
177 176 oveq2d φNZK01NseqM+FN+2K+1=1NseqM+FN+2K1NGN+2K+1
178 16 36 174 subdid φNZK01NseqM+FN+2K1NGN+2K+1=1NseqM+FN+2K1N1NGN+2K+1
179 115 oveq1d φNZK01N1NGN+2K+1=1GN+2K+1
180 16 16 169 mulassd φNZK01N1NGN+2K+1=1N1NGN+2K+1
181 169 mullidd φNZK01GN+2K+1=GN+2K+1
182 179 180 181 3eqtr3d φNZK01N1NGN+2K+1=GN+2K+1
183 182 oveq2d φNZK01NseqM+FN+2K1N1NGN+2K+1=1NseqM+FN+2KGN+2K+1
184 177 178 183 3eqtrd φNZK01NseqM+FN+2K+1=1NseqM+FN+2KGN+2K+1
185 simp1 φNZK0φ
186 1 2 3 4 5 iseraltlem1 φN+2K+1Z0GN+2K+1
187 185 69 186 syl2anc φNZK00GN+2K+1
188 72 168 subge02d φNZK00GN+2K+11NseqM+FN+2KGN+2K+11NseqM+FN+2K
189 187 188 mpbid φNZK01NseqM+FN+2KGN+2K+11NseqM+FN+2K
190 184 189 eqbrtrd φNZK01NseqM+FN+2K+11NseqM+FN+2K
191 67 71 72 140 190 letrd φNZK01NseqM+FNGN+11NseqM+FN+2K
192 62 66 readdcld φNZK01NseqM+FN+GN+1
193 1 2 3 4 5 6 iseraltlem2 φNZK01NseqM+FN+2K1NseqM+FN
194 1 2 3 4 5 iseraltlem1 φN+1Z0GN+1
195 185 65 194 syl2anc φNZK00GN+1
196 62 66 addge01d φNZK00GN+11NseqM+FN1NseqM+FN+GN+1
197 195 196 mpbid φNZK01NseqM+FN1NseqM+FN+GN+1
198 72 62 192 193 197 letrd φNZK01NseqM+FN+2K1NseqM+FN+GN+1
199 72 62 66 absdifled φNZK01NseqM+FN+2K1NseqM+FNGN+11NseqM+FNGN+11NseqM+FN+2K1NseqM+FN+2K1NseqM+FN+GN+1
200 191 198 199 mpbir2and φNZK01NseqM+FN+2K1NseqM+FNGN+1
201 61 200 eqbrtrrd φNZK0seqM+FN+2KseqM+FNGN+1
202 16 131 38 subdid φNZK01NseqM+FN+2K+1seqM+FN=1NseqM+FN+2K+11NseqM+FN
203 202 fveq2d φNZK01NseqM+FN+2K+1seqM+FN=1NseqM+FN+2K+11NseqM+FN
204 70 37 resubcld φNZK0seqM+FN+2K+1seqM+FN
205 204 recnd φNZK0seqM+FN+2K+1seqM+FN
206 16 205 absmuld φNZK01NseqM+FN+2K+1seqM+FN=1NseqM+FN+2K+1seqM+FN
207 203 206 eqtr3d φNZK01NseqM+FN+2K+11NseqM+FN=1NseqM+FN+2K+1seqM+FN
208 56 oveq1d φNZK01NseqM+FN+2K+1seqM+FN=1seqM+FN+2K+1seqM+FN
209 205 abscld φNZK0seqM+FN+2K+1seqM+FN
210 209 recnd φNZK0seqM+FN+2K+1seqM+FN
211 210 mullidd φNZK01seqM+FN+2K+1seqM+FN=seqM+FN+2K+1seqM+FN
212 207 208 211 3eqtrd φNZK01NseqM+FN+2K+11NseqM+FN=seqM+FN+2K+1seqM+FN
213 71 72 192 190 198 letrd φNZK01NseqM+FN+2K+11NseqM+FN+GN+1
214 71 62 66 absdifled φNZK01NseqM+FN+2K+11NseqM+FNGN+11NseqM+FNGN+11NseqM+FN+2K+11NseqM+FN+2K+11NseqM+FN+GN+1
215 140 213 214 mpbir2and φNZK01NseqM+FN+2K+11NseqM+FNGN+1
216 212 215 eqbrtrrd φNZK0seqM+FN+2K+1seqM+FNGN+1
217 201 216 jca φNZK0seqM+FN+2KseqM+FNGN+1seqM+FN+2K+1seqM+FNGN+1