Metamath Proof Explorer


Theorem islptre

Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses islptre.1 J=topGenran.
islptre.2 φA
islptre.3 φB
Assertion islptre φBlimPtJAa*b*BababAB

Proof

Step Hyp Ref Expression
1 islptre.1 J=topGenran.
2 islptre.2 φA
3 islptre.3 φB
4 retopon topGenran.TopOn
5 1 4 eqeltri JTopOn
6 5 topontopi JTop
7 6 a1i φJTop
8 5 toponunii =J
9 8 islp2 JTopABBlimPtJAnneiJBnAB
10 7 2 3 9 syl3anc φBlimPtJAnneiJBnAB
11 simp1r φnneiJBnABa*b*BabnneiJBnAB
12 iooretop abtopGenran.
13 12 1 eleqtrri abJ
14 13 a1i a*b*BababJ
15 snssi BabBab
16 15 adantl a*b*BabBab
17 ssidd a*b*Bababab
18 sseq2 v=abBvBab
19 sseq1 v=abvababab
20 18 19 anbi12d v=abBvvabBababab
21 20 rspcev abJBabababvJBvvab
22 14 16 17 21 syl12anc a*b*BabvJBvvab
23 ioossre ab
24 22 23 jctil a*b*BababvJBvvab
25 elioore BabB
26 25 snssd BabB
27 26 adantl a*b*BabB
28 8 isnei JTopBabneiJBabvJBvvab
29 6 27 28 sylancr a*b*BababneiJBabvJBvvab
30 24 29 mpbird a*b*BababneiJB
31 30 3adant1 φnneiJBnABa*b*BababneiJB
32 ineq1 n=abnAB=abAB
33 32 neeq1d n=abnABabAB
34 33 rspccva nneiJBnABabneiJBabAB
35 11 31 34 syl2anc φnneiJBnABa*b*BababAB
36 35 3exp φnneiJBnABa*b*BababAB
37 36 ralrimivv φnneiJBnABa*b*BababAB
38 3 snssd φB
39 8 isnei JTopBnneiJBnvJBvvn
40 6 38 39 sylancr φnneiJBnvJBvvn
41 40 simplbda φnneiJBvJBvvn
42 1 eleq2i vJvtopGenran.
43 42 biimpi vJvtopGenran.
44 43 3ad2ant2 φvJBvvnvtopGenran.
45 simp1 φvJBvvnφ
46 simp3l φvJBvvnBv
47 simpr φBvBv
48 3 adantr φBvB
49 snssg BBvBv
50 48 49 syl φBvBvBv
51 47 50 mpbird φBvBv
52 45 46 51 syl2anc φvJBvvnBv
53 44 52 jca φvJBvvnvtopGenran.Bv
54 tg2 vtopGenran.Bvuran.Buuv
55 ioof .:*×*𝒫
56 ffn .:*×*𝒫.Fn*×*
57 ovelrn .Fn*×*uran.a*b*u=ab
58 55 56 57 mp2b uran.a*b*u=ab
59 58 biimpi uran.a*b*u=ab
60 59 adantr uran.Buuva*b*u=ab
61 simpll Buuvu=abBu
62 simpr Buuvu=abu=ab
63 61 62 eleqtrd Buuvu=abBab
64 simplr Buuvu=abuv
65 62 64 eqsstrrd Buuvu=ababv
66 63 65 jca Buuvu=abBababv
67 66 ex Buuvu=abBababv
68 67 adantl uran.Buuvu=abBababv
69 68 reximdv uran.Buuvb*u=abb*Bababv
70 69 reximdv uran.Buuva*b*u=aba*b*Bababv
71 60 70 mpd uran.Buuva*b*Bababv
72 71 rexlimiva uran.Buuva*b*Bababv
73 53 54 72 3syl φvJBvvna*b*Bababv
74 simpl3r φvJBvvna*vn
75 74 adantr φvJBvvna*b*vn
76 sstr abvvnabn
77 76 expcom vnabvabn
78 75 77 syl φvJBvvna*b*abvabn
79 78 anim2d φvJBvvna*b*BababvBababn
80 79 reximdva φvJBvvna*b*Bababvb*Bababn
81 80 reximdva φvJBvvna*b*Bababva*b*Bababn
82 73 81 mpd φvJBvvna*b*Bababn
83 82 3exp φvJBvvna*b*Bababn
84 83 rexlimdv φvJBvvna*b*Bababn
85 84 adantr φnneiJBvJBvvna*b*Bababn
86 41 85 mpd φnneiJBa*b*Bababn
87 86 adantlr φa*b*BababABnneiJBa*b*Bababn
88 nfv aφ
89 nfra1 aa*b*BababAB
90 88 89 nfan aφa*b*BababAB
91 nfv anneiJB
92 90 91 nfan aφa*b*BababABnneiJB
93 nfv anAB
94 nfv bφ
95 nfra2w ba*b*BababAB
96 94 95 nfan bφa*b*BababAB
97 nfv bnneiJB
98 96 97 nfan bφa*b*BababABnneiJB
99 nfv ba*
100 98 99 nfan bφa*b*BababABnneiJBa*
101 nfv bnAB
102 inss1 abABab
103 simp3r φa*b*BababABnneiJBa*b*Bababnabn
104 102 103 sstrid φa*b*BababABnneiJBa*b*BababnabABn
105 inss2 abABAB
106 105 a1i φa*b*BababABnneiJBa*b*BababnabABAB
107 104 106 ssind φa*b*BababABnneiJBa*b*BababnabABnAB
108 simpllr φa*b*BababABnneiJBa*a*b*BababAB
109 108 3ad2ant1 φa*b*BababABnneiJBa*b*Bababna*b*BababAB
110 simp1r φa*b*BababABnneiJBa*b*Bababna*
111 simp2 φa*b*BababABnneiJBa*b*Bababnb*
112 110 111 jca φa*b*BababABnneiJBa*b*Bababna*b*
113 simp3l φa*b*BababABnneiJBa*b*BababnBab
114 rsp2 a*b*BababABa*b*BababAB
115 109 112 113 114 syl3c φa*b*BababABnneiJBa*b*BababnabAB
116 ssn0 abABnABabABnAB
117 107 115 116 syl2anc φa*b*BababABnneiJBa*b*BababnnAB
118 117 3exp φa*b*BababABnneiJBa*b*BababnnAB
119 100 101 118 rexlimd φa*b*BababABnneiJBa*b*BababnnAB
120 119 ex φa*b*BababABnneiJBa*b*BababnnAB
121 92 93 120 rexlimd φa*b*BababABnneiJBa*b*BababnnAB
122 87 121 mpd φa*b*BababABnneiJBnAB
123 122 ralrimiva φa*b*BababABnneiJBnAB
124 37 123 impbida φnneiJBnABa*b*BababAB
125 10 124 bitrd φBlimPtJAa*b*BababAB