Metamath Proof Explorer


Theorem isprm5

Description: One need only check prime divisors of P up to sqrt P in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Assertion isprm5 PP2zz2P¬zP

Proof

Step Hyp Ref Expression
1 isprm4 PP2z2zPz=P
2 prmuz2 zz2
3 2 a1i P2zz2
4 eluz2gt1 P21<P
5 eluzelre P2P
6 eluz2nn P2P
7 6 nngt0d P20<P
8 ltmulgt11 PP0<P1<PP<PP
9 5 5 7 8 syl3anc P21<PP<PP
10 4 9 mpbid P2P<PP
11 5 5 remulcld P2PP
12 5 11 ltnled P2P<PP¬PPP
13 10 12 mpbid P2¬PPP
14 oveq12 z=Pz=Pzz=PP
15 14 anidms z=Pzz=PP
16 15 breq1d z=PzzPPPP
17 16 notbid z=P¬zzP¬PPP
18 13 17 syl5ibrcom P2z=P¬zzP
19 18 imim2d P2zPz=PzP¬zzP
20 con2 zP¬zzPzzP¬zP
21 19 20 syl6 P2zPz=PzzP¬zP
22 3 21 imim12d P2z2zPz=PzzzP¬zP
23 22 ralimdv2 P2z2zPz=PzzzP¬zP
24 annim zP¬z=P¬zPz=P
25 oveq12 x=zx=zxx=zz
26 25 anidms x=zxx=zz
27 26 breq1d x=zxxPzzP
28 breq1 x=zxPzP
29 27 28 anbi12d x=zxxPxPzzPzP
30 29 rspcev z2zzPzPx2xxPxP
31 30 ancom2s z2zPzzPx2xxPxP
32 31 expr z2zPzzPx2xxPxP
33 32 ad2ant2lr P2z2zP¬z=PzzPx2xxPxP
34 simprl P2z2zP¬z=PzP
35 eluzelz z2z
36 35 ad2antlr P2z2zP¬z=Pz
37 eluz2nn z2z
38 37 ad2antlr P2z2zP¬z=Pz
39 38 nnne0d P2z2zP¬z=Pz0
40 eluzelz P2P
41 40 ad2antrr P2z2zP¬z=PP
42 dvdsval2 zz0PzPPz
43 36 39 41 42 syl3anc P2z2zP¬z=PzPPz
44 34 43 mpbid P2z2zP¬z=PPz
45 eluzelre z2z
46 45 ad2antlr P2z2zP¬z=Pz
47 46 recnd P2z2zP¬z=Pz
48 47 mullidd P2z2zP¬z=P1z=z
49 5 ad2antrr P2z2zP¬z=PP
50 6 ad2antrr P2z2zP¬z=PP
51 dvdsle zPzPzP
52 51 imp zPzPzP
53 36 50 34 52 syl21anc P2z2zP¬z=PzP
54 simprr P2z2zP¬z=P¬z=P
55 54 neqned P2z2zP¬z=PzP
56 55 necomd P2z2zP¬z=PPz
57 46 49 53 56 leneltd P2z2zP¬z=Pz<P
58 48 57 eqbrtrd P2z2zP¬z=P1z<P
59 1red P2z2zP¬z=P1
60 41 zred P2z2zP¬z=PP
61 nnre zz
62 nngt0 z0<z
63 61 62 jca zz0<z
64 38 63 syl P2z2zP¬z=Pz0<z
65 ltmuldiv 1Pz0<z1z<P1<Pz
66 59 60 64 65 syl3anc P2z2zP¬z=P1z<P1<Pz
67 58 66 mpbid P2z2zP¬z=P1<Pz
68 eluz2b1 Pz2Pz1<Pz
69 44 67 68 sylanbrc P2z2zP¬z=PPz2
70 46 46 remulcld P2z2zP¬z=Pzz
71 38 38 nnmulcld P2z2zP¬z=Pzz
72 nnrp PP+
73 nnrp zzzz+
74 rpdivcl P+zz+Pzz+
75 72 73 74 syl2an PzzPzz+
76 50 71 75 syl2anc P2z2zP¬z=PPzz+
77 49 70 76 lemul1d P2z2zP¬z=PPzzPPzzzzPzz
78 49 recnd P2z2zP¬z=PP
79 78 47 78 47 39 39 divmuldivd P2z2zP¬z=PPzPz=PPzz
80 71 nncnd P2z2zP¬z=Pzz
81 71 nnne0d P2z2zP¬z=Pzz0
82 78 78 80 81 divassd P2z2zP¬z=PPPzz=PPzz
83 79 82 eqtrd P2z2zP¬z=PPzPz=PPzz
84 78 80 81 divcan2d P2z2zP¬z=PzzPzz=P
85 84 eqcomd P2z2zP¬z=PP=zzPzz
86 83 85 breq12d P2z2zP¬z=PPzPzPPPzzzzPzz
87 77 86 bitr4d P2z2zP¬z=PPzzPzPzP
88 87 biimpd P2z2zP¬z=PPzzPzPzP
89 78 47 39 divcan2d P2z2zP¬z=PzPz=P
90 dvds0lem zPzPzPz=PPzP
91 36 44 41 89 90 syl31anc P2z2zP¬z=PPzP
92 88 91 jctird P2z2zP¬z=PPzzPzPzPPzP
93 oveq12 x=Pzx=Pzxx=PzPz
94 93 anidms x=Pzxx=PzPz
95 94 breq1d x=PzxxPPzPzP
96 breq1 x=PzxPPzP
97 95 96 anbi12d x=PzxxPxPPzPzPPzP
98 97 rspcev Pz2PzPzPPzPx2xxPxP
99 69 92 98 syl6an P2z2zP¬z=PPzzx2xxPxP
100 70 49 letrid P2z2zP¬z=PzzPPzz
101 33 99 100 mpjaod P2z2zP¬z=Px2xxPxP
102 101 ex P2z2zP¬z=Px2xxPxP
103 24 102 biimtrrid P2z2¬zPz=Px2xxPxP
104 103 rexlimdva P2z2¬zPz=Px2xxPxP
105 prmz zz
106 105 ad2antrl P2x2xxPxPzzxz
107 106 zred P2x2xxPxPzzxz
108 107 107 remulcld P2x2xxPxPzzxzz
109 eluzelz x2x
110 109 ad3antlr P2x2xxPxPzzxx
111 110 zred P2x2xxPxPzzxx
112 111 111 remulcld P2x2xxPxPzzxxx
113 40 ad3antrrr P2x2xxPxPzzxP
114 113 zred P2x2xxPxPzzxP
115 eluz2nn x2x
116 115 ad3antlr P2x2xxPxPzzxx
117 simprr P2x2xxPxPzzxzx
118 dvdsle zxzxzx
119 118 imp zxzxzx
120 106 116 117 119 syl21anc P2x2xxPxPzzxzx
121 eluzge2nn0 z2z0
122 121 nn0ge0d z20z
123 2 122 syl z0z
124 123 ad2antrl P2x2xxPxPzzx0z
125 nnnn0 xx0
126 125 nn0ge0d x0x
127 116 126 syl P2x2xxPxPzzx0x
128 le2msq z0zx0xzxzzxx
129 107 124 111 127 128 syl22anc P2x2xxPxPzzxzxzzxx
130 120 129 mpbid P2x2xxPxPzzxzzxx
131 simplrl P2x2xxPxPzzxxxP
132 108 112 114 130 131 letrd P2x2xxPxPzzxzzP
133 simplrr P2x2xxPxPzzxxP
134 106 110 113 117 133 dvdstrd P2x2xxPxPzzxzP
135 132 134 jc P2x2xxPxPzzx¬zzP¬zP
136 exprmfct x2zzx
137 136 ad2antlr P2x2xxPxPzzx
138 135 137 reximddv P2x2xxPxPz¬zzP¬zP
139 138 ex P2x2xxPxPz¬zzP¬zP
140 139 rexlimdva P2x2xxPxPz¬zzP¬zP
141 104 140 syld P2z2¬zPz=Pz¬zzP¬zP
142 rexnal z2¬zPz=P¬z2zPz=P
143 rexnal z¬zzP¬zP¬zzzP¬zP
144 141 142 143 3imtr3g P2¬z2zPz=P¬zzzP¬zP
145 23 144 impcon4bid P2z2zPz=PzzzP¬zP
146 prmnn zz
147 146 nncnd zz
148 147 sqvald zz2=zz
149 148 breq1d zz2PzzP
150 149 imbi1d zz2P¬zPzzP¬zP
151 150 ralbiia zz2P¬zPzzzP¬zP
152 145 151 bitr4di P2z2zPz=Pzz2P¬zP
153 152 pm5.32i P2z2zPz=PP2zz2P¬zP
154 1 153 bitri PP2zz2P¬zP