| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2cn.1 |
|
| 2 |
|
itg2cn.2 |
|
| 3 |
|
itg2cn.3 |
|
| 4 |
|
itg2cn.4 |
|
| 5 |
4
|
rphalfcld |
|
| 6 |
3 5
|
ltsubrpd |
|
| 7 |
5
|
rpred |
|
| 8 |
3 7
|
resubcld |
|
| 9 |
8 3
|
ltnled |
|
| 10 |
6 9
|
mpbid |
|
| 11 |
1
|
ffvelcdmda |
|
| 12 |
|
elrege0 |
|
| 13 |
11 12
|
sylib |
|
| 14 |
13
|
simpld |
|
| 15 |
14
|
rexrd |
|
| 16 |
13
|
simprd |
|
| 17 |
|
elxrge0 |
|
| 18 |
15 16 17
|
sylanbrc |
|
| 19 |
|
0e0iccpnf |
|
| 20 |
|
ifcl |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
21
|
adantlr |
|
| 23 |
22
|
fmpttd |
|
| 24 |
|
itg2cl |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
fmpttd |
|
| 27 |
26
|
frnd |
|
| 28 |
8
|
rexrd |
|
| 29 |
|
supxrleub |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
1 2 3
|
itg2cnlem1 |
|
| 32 |
31
|
breq1d |
|
| 33 |
26
|
ffnd |
|
| 34 |
|
breq1 |
|
| 35 |
34
|
ralrn |
|
| 36 |
|
breq2 |
|
| 37 |
36
|
ifbid |
|
| 38 |
37
|
mpteq2dv |
|
| 39 |
38
|
fveq2d |
|
| 40 |
|
eqid |
|
| 41 |
|
fvex |
|
| 42 |
39 40 41
|
fvmpt |
|
| 43 |
42
|
breq1d |
|
| 44 |
43
|
ralbiia |
|
| 45 |
35 44
|
bitrdi |
|
| 46 |
33 45
|
syl |
|
| 47 |
30 32 46
|
3bitr3d |
|
| 48 |
10 47
|
mtbid |
|
| 49 |
|
rexnal |
|
| 50 |
48 49
|
sylibr |
|
| 51 |
1
|
adantr |
|
| 52 |
2
|
adantr |
|
| 53 |
3
|
adantr |
|
| 54 |
4
|
adantr |
|
| 55 |
|
simprl |
|
| 56 |
|
simprr |
|
| 57 |
|
fveq2 |
|
| 58 |
57
|
breq1d |
|
| 59 |
58 57
|
ifbieq1d |
|
| 60 |
59
|
cbvmptv |
|
| 61 |
60
|
fveq2i |
|
| 62 |
61
|
breq1i |
|
| 63 |
56 62
|
sylnib |
|
| 64 |
51 52 53 54 55 63
|
itg2cnlem2 |
|
| 65 |
|
elequ1 |
|
| 66 |
65 57
|
ifbieq1d |
|
| 67 |
66
|
cbvmptv |
|
| 68 |
67
|
fveq2i |
|
| 69 |
68
|
breq1i |
|
| 70 |
69
|
imbi2i |
|
| 71 |
70
|
ralbii |
|
| 72 |
71
|
rexbii |
|
| 73 |
64 72
|
sylibr |
|
| 74 |
50 73
|
rexlimddv |
|