Metamath Proof Explorer


Theorem itgabs

Description: The triangle inequality for integrals. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgabs.1 φxABV
itgabs.2 φxAB𝐿1
Assertion itgabs φABdxABdx

Proof

Step Hyp Ref Expression
1 itgabs.1 φxABV
2 itgabs.2 φxAB𝐿1
3 1 2 itgcl φABdx
4 3 cjcld φABdx
5 iblmbf xAB𝐿1xABMblFn
6 2 5 syl φxABMblFn
7 6 1 mbfmptcl φxAB
8 7 ralrimiva φxAB
9 nfv yB
10 nfcsb1v _xy/xB
11 10 nfel1 xy/xB
12 csbeq1a x=yB=y/xB
13 12 eleq1d x=yBy/xB
14 9 11 13 cbvralw xAByAy/xB
15 8 14 sylib φyAy/xB
16 15 r19.21bi φyAy/xB
17 nfcv _yB
18 17 10 12 cbvmpt xAB=yAy/xB
19 18 2 eqeltrrid φyAy/xB𝐿1
20 4 16 19 iblmulc2 φyAABdxy/xB𝐿1
21 4 adantr φyAABdx
22 21 16 mulcld φyAABdxy/xB
23 22 iblcn φyAABdxy/xB𝐿1yAABdxy/xB𝐿1yAABdxy/xB𝐿1
24 20 23 mpbid φyAABdxy/xB𝐿1yAABdxy/xB𝐿1
25 24 simpld φyAABdxy/xB𝐿1
26 ovexd φyAABdxy/xBV
27 26 20 iblabs φyAABdxy/xB𝐿1
28 22 recld φyAABdxy/xB
29 22 abscld φyAABdxy/xB
30 22 releabsd φyAABdxy/xBABdxy/xB
31 25 27 28 29 30 itgle φAABdxy/xBdyAABdxy/xBdy
32 3 abscld φABdx
33 32 recnd φABdx
34 33 sqvald φABdx2=ABdxABdx
35 3 absvalsqd φABdx2=ABdxABdx
36 3 4 mulcomd φABdxABdx=ABdxABdx
37 12 17 10 cbvitg ABdx=Ay/xBdy
38 37 oveq2i ABdxABdx=ABdxAy/xBdy
39 4 16 19 itgmulc2 φABdxAy/xBdy=AABdxy/xBdy
40 38 39 eqtrid φABdxABdx=AABdxy/xBdy
41 35 36 40 3eqtrd φABdx2=AABdxy/xBdy
42 41 fveq2d φABdx2=AABdxy/xBdy
43 32 resqcld φABdx2
44 43 rered φABdx2=ABdx2
45 26 20 itgre φAABdxy/xBdy=AABdxy/xBdy
46 42 44 45 3eqtr3d φABdx2=AABdxy/xBdy
47 34 46 eqtr3d φABdxABdx=AABdxy/xBdy
48 12 fveq2d x=yB=y/xB
49 nfcv _yB
50 nfcv _xabs
51 50 10 nffv _xy/xB
52 48 49 51 cbvitg ABdx=Ay/xBdy
53 52 oveq2i ABdxABdx=ABdxAy/xBdy
54 16 abscld φyAy/xB
55 16 19 iblabs φyAy/xB𝐿1
56 33 54 55 itgmulc2 φABdxAy/xBdy=AABdxy/xBdy
57 21 16 absmuld φyAABdxy/xB=ABdxy/xB
58 3 adantr φyAABdx
59 58 abscjd φyAABdx=ABdx
60 59 oveq1d φyAABdxy/xB=ABdxy/xB
61 57 60 eqtrd φyAABdxy/xB=ABdxy/xB
62 61 itgeq2dv φAABdxy/xBdy=AABdxy/xBdy
63 56 62 eqtr4d φABdxAy/xBdy=AABdxy/xBdy
64 53 63 eqtrid φABdxABdx=AABdxy/xBdy
65 31 47 64 3brtr4d φABdxABdxABdxABdx
66 65 adantr φ0<ABdxABdxABdxABdxABdx
67 32 adantr φ0<ABdxABdx
68 7 abscld φxAB
69 1 2 iblabs φxAB𝐿1
70 68 69 itgrecl φABdx
71 70 adantr φ0<ABdxABdx
72 simpr φ0<ABdx0<ABdx
73 lemul2 ABdxABdxABdx0<ABdxABdxABdxABdxABdxABdxABdx
74 67 71 67 72 73 syl112anc φ0<ABdxABdxABdxABdxABdxABdxABdx
75 66 74 mpbird φ0<ABdxABdxABdx
76 75 ex φ0<ABdxABdxABdx
77 7 absge0d φxA0B
78 69 68 77 itgge0 φ0ABdx
79 breq1 0=ABdx0ABdxABdxABdx
80 78 79 syl5ibcom φ0=ABdxABdxABdx
81 3 absge0d φ0ABdx
82 0re 0
83 leloe 0ABdx0ABdx0<ABdx0=ABdx
84 82 32 83 sylancr φ0ABdx0<ABdx0=ABdx
85 81 84 mpbid φ0<ABdx0=ABdx
86 76 80 85 mpjaod φABdxABdx