Metamath Proof Explorer


Theorem itgss3

Description: Expand the set of an integral by a nullset. (Contributed by Mario Carneiro, 13-Aug-2014) (Revised by Mario Carneiro, 2-Sep-2014)

Ref Expression
Hypotheses itgss3.1 φAB
itgss3.2 φB
itgss3.3 φvol*BA=0
itgss3.4 φxBC
Assertion itgss3 φxAC𝐿1xBC𝐿1ACdx=BCdx

Proof

Step Hyp Ref Expression
1 itgss3.1 φAB
2 itgss3.2 φB
3 itgss3.3 φvol*BA=0
4 itgss3.4 φxBC
5 nfcv _yifxAC0
6 nfv xyA
7 nfcsb1v _xy/xC
8 nfcv _x0
9 6 7 8 nfif _xifyAy/xC0
10 eleq1w x=yxAyA
11 csbeq1a x=yC=y/xC
12 10 11 ifbieq1d x=yifxAC0=ifyAy/xC0
13 5 9 12 cbvmpt xBifxAC0=yBifyAy/xC0
14 1 adantr φxAC𝐿1AB
15 nfcv _yC
16 15 7 11 cbvmpt xAC=yAy/xC
17 iftrue yAifyAy/xC0=y/xC
18 17 mpteq2ia yAifyAy/xC0=yAy/xC
19 16 18 eqtr4i xAC=yAifyAy/xC0
20 simpr φxAC𝐿1xAC𝐿1
21 19 20 eqeltrrid φxAC𝐿1yAifyAy/xC0𝐿1
22 iblmbf yAifyAy/xC0𝐿1yAifyAy/xC0MblFn
23 21 22 syl φxAC𝐿1yAifyAy/xC0MblFn
24 1 sselda φxAxB
25 24 4 syldan φxAC
26 25 fmpttd φxAC:A
27 26 adantr φxAC𝐿1xAC:A
28 19 feq1i xAC:AyAifyAy/xC0:A
29 27 28 sylib φxAC𝐿1yAifyAy/xC0:A
30 29 fvmptelcdm φxAC𝐿1yAifyAy/xC0
31 23 30 mbfdm2 φxAC𝐿1Adomvol
32 undif ABABA=B
33 1 32 sylib φABA=B
34 33 adantr φAdomvolABA=B
35 id AdomvolAdomvol
36 2 ssdifssd φBA
37 nulmbl BAvol*BA=0BAdomvol
38 36 3 37 syl2anc φBAdomvol
39 unmbl AdomvolBAdomvolABAdomvol
40 35 38 39 syl2anr φAdomvolABAdomvol
41 34 40 eqeltrrd φAdomvolBdomvol
42 31 41 syldan φxAC𝐿1Bdomvol
43 eldifn yBA¬yA
44 43 adantl φxAC𝐿1yBA¬yA
45 44 iffalsed φxAC𝐿1yBAifyAy/xC0=0
46 14 42 30 45 21 iblss2 φxAC𝐿1yBifyAy/xC0𝐿1
47 13 46 eqeltrid φxAC𝐿1xBifxAC0𝐿1
48 iftrue xAifxAC0=C
49 48 mpteq2ia xAifxAC0=xAC
50 5 9 12 cbvmpt xAifxAC0=yAifyAy/xC0
51 49 50 eqtr3i xAC=yAifyAy/xC0
52 1 adantr φxBifxAC0𝐿1AB
53 simpr φxBifxAC0𝐿1xBifxAC0𝐿1
54 13 53 eqeltrrid φxBifxAC0𝐿1yBifyAy/xC0𝐿1
55 iblmbf yBifyAy/xC0𝐿1yBifyAy/xC0MblFn
56 54 55 syl φxBifxAC0𝐿1yBifyAy/xC0MblFn
57 0cn 0
58 ifcl C0ifxAC0
59 4 57 58 sylancl φxBifxAC0
60 59 fmpttd φxBifxAC0:B
61 13 feq1i xBifxAC0:ByBifyAy/xC0:B
62 60 61 sylib φyBifyAy/xC0:B
63 62 adantr φxBifxAC0𝐿1yBifyAy/xC0:B
64 63 fvmptelcdm φxBifxAC0𝐿1yBifyAy/xC0
65 56 64 mbfdm2 φxBifxAC0𝐿1Bdomvol
66 dfss4 ABBBA=A
67 1 66 sylib φBBA=A
68 67 adantr φBdomvolBBA=A
69 id BdomvolBdomvol
70 difmbl BdomvolBAdomvolBBAdomvol
71 69 38 70 syl2anr φBdomvolBBAdomvol
72 68 71 eqeltrrd φBdomvolAdomvol
73 65 72 syldan φxBifxAC0𝐿1Adomvol
74 52 73 64 54 iblss φxBifxAC0𝐿1yAifyAy/xC0𝐿1
75 51 74 eqeltrid φxBifxAC0𝐿1xAC𝐿1
76 47 75 impbida φxAC𝐿1xBifxAC0𝐿1
77 67 eleq2d φxBBAxA
78 77 biimpa φxBBAxA
79 78 48 syl φxBBAifxAC0=C
80 59 4 36 3 79 itgeqa φxBifxAC0𝐿1xBC𝐿1BifxAC0dx=BCdx
81 80 simpld φxBifxAC0𝐿1xBC𝐿1
82 76 81 bitrd φxAC𝐿1xBC𝐿1
83 itgss2 ABACdx=BifxAC0dx
84 1 83 syl φACdx=BifxAC0dx
85 80 simprd φBifxAC0dx=BCdx
86 84 85 eqtrd φACdx=BCdx
87 82 86 jca φxAC𝐿1xBC𝐿1ACdx=BCdx