Metamath Proof Explorer


Theorem itsclc0yqsol

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the y-coordinate of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itsclc0yqsol.d D=R2QC2
Assertion itsclc0yqsol ABCA0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQ

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itsclc0yqsol.d D=R2QC2
3 eqid 2BC=2BC
4 eqid C2A2R2=C2A2R2
5 1 3 4 itsclc0yqe ABCR+XYX2+Y2=R2AX+BY=CQY2+2BCY+C2A2R2=0
6 5 3adant1r ABCA0B0R+XYX2+Y2=R2AX+BY=CQY2+2BCY+C2A2R2=0
7 6 3adant2r ABCA0B0R+0DXYX2+Y2=R2AX+BY=CQY2+2BCY+C2A2R2=0
8 3simpa ABCAB
9 8 adantr ABCA0B0AB
10 1 resum2sqcl ABQ
11 9 10 syl ABCA0B0Q
12 11 3ad2ant1 ABCA0B0R+0DXYQ
13 12 recnd ABCA0B0R+0DXYQ
14 simpr1 A0ABCA
15 simpl A0ABCA0
16 simpr2 A0ABCB
17 1 resum2sqgt0 AA0B0<Q
18 14 15 16 17 syl21anc A0ABC0<Q
19 18 ex A0ABC0<Q
20 simpr2 B0ABCB
21 simpl B0ABCB0
22 simpr1 B0ABCA
23 eqid B2+A2=B2+A2
24 23 resum2sqgt0 BB0A0<B2+A2
25 20 21 22 24 syl21anc B0ABC0<B2+A2
26 simp1 ABCA
27 26 recnd ABCA
28 27 sqcld ABCA2
29 simp2 ABCB
30 29 recnd ABCB
31 30 sqcld ABCB2
32 28 31 addcomd ABCA2+B2=B2+A2
33 32 adantl B0ABCA2+B2=B2+A2
34 1 33 eqtrid B0ABCQ=B2+A2
35 25 34 breqtrrd B0ABC0<Q
36 35 ex B0ABC0<Q
37 19 36 jaoi A0B0ABC0<Q
38 37 impcom ABCA0B00<Q
39 38 gt0ne0d ABCA0B0Q0
40 39 3ad2ant1 ABCA0B0R+0DXYQ0
41 2cnd ABCA0B0R+0DXY2
42 recn BB
43 42 3ad2ant2 ABCB
44 43 adantr ABCA0B0B
45 44 3ad2ant1 ABCA0B0R+0DXYB
46 recn CC
47 46 3ad2ant3 ABCC
48 47 adantr ABCA0B0C
49 48 3ad2ant1 ABCA0B0R+0DXYC
50 45 49 mulcld ABCA0B0R+0DXYBC
51 41 50 mulcld ABCA0B0R+0DXY2BC
52 51 negcld ABCA0B0R+0DXY2BC
53 49 sqcld ABCA0B0R+0DXYC2
54 recn AA
55 54 3ad2ant1 ABCA
56 55 adantr ABCA0B0A
57 56 3ad2ant1 ABCA0B0R+0DXYA
58 57 sqcld ABCA0B0R+0DXYA2
59 simpl R+0DR+
60 59 rpcnd R+0DR
61 60 3ad2ant2 ABCA0B0R+0DXYR
62 61 sqcld ABCA0B0R+0DXYR2
63 58 62 mulcld ABCA0B0R+0DXYA2R2
64 53 63 subcld ABCA0B0R+0DXYC2A2R2
65 recn YY
66 65 adantl XYY
67 66 3ad2ant3 ABCA0B0R+0DXYY
68 eqidd ABCA0B0R+0DXY2BC24QC2A2R2=2BC24QC2A2R2
69 13 40 52 64 67 68 quad ABCA0B0R+0DXYQY2+2BCY+C2A2R2=0Y=-2BC+2BC24QC2A2R22QY=-2BC-2BC24QC2A2R22Q
70 54 abscld AA
71 70 recnd AA
72 71 3ad2ant1 ABCA
73 72 adantr ABCA0B0A
74 73 3ad2ant1 ABCA0B0R+0DXYA
75 59 rpred R+0DR
76 75 3ad2ant2 ABCA0B0R+0DXYR
77 76 resqcld ABCA0B0R+0DXYR2
78 77 12 remulcld ABCA0B0R+0DXYR2Q
79 simp1l3 ABCA0B0R+0DXYC
80 79 resqcld ABCA0B0R+0DXYC2
81 78 80 resubcld ABCA0B0R+0DXYR2QC2
82 2 81 eqeltrid ABCA0B0R+0DXYD
83 82 recnd ABCA0B0R+0DXYD
84 83 sqrtcld ABCA0B0R+0DXYD
85 41 74 84 mulassd ABCA0B0R+0DXY2AD=2AD
86 85 oveq2d ABCA0B0R+0DXY2BC+2AD=2BC+2AD
87 51 negnegd ABCA0B0R+0DXY2BC=2BC
88 simpl ABCA0B0ABC
89 88 3ad2ant1 ABCA0B0R+0DXYABC
90 simp2r ABCA0B0R+0DXY0D
91 1 3 4 2 itsclc0yqsollem2 ABCR0D2BC24QC2A2R2=2AD
92 89 76 90 91 syl3anc ABCA0B0R+0DXY2BC24QC2A2R2=2AD
93 87 92 oveq12d ABCA0B0R+0DXY-2BC+2BC24QC2A2R2=2BC+2AD
94 74 84 mulcld ABCA0B0R+0DXYAD
95 41 50 94 adddid ABCA0B0R+0DXY2BC+AD=2BC+2AD
96 86 93 95 3eqtr4d ABCA0B0R+0DXY-2BC+2BC24QC2A2R2=2BC+AD
97 96 oveq1d ABCA0B0R+0DXY-2BC+2BC24QC2A2R22Q=2BC+AD2Q
98 50 94 addcld ABCA0B0R+0DXYBC+AD
99 2ne0 20
100 99 a1i ABCA0B0R+0DXY20
101 98 13 41 40 100 divcan5d ABCA0B0R+0DXY2BC+AD2Q=BC+ADQ
102 97 101 eqtrd ABCA0B0R+0DXY-2BC+2BC24QC2A2R22Q=BC+ADQ
103 102 eqeq2d ABCA0B0R+0DXYY=-2BC+2BC24QC2A2R22QY=BC+ADQ
104 85 oveq2d ABCA0B0R+0DXY2BC2AD=2BC2AD
105 87 92 oveq12d ABCA0B0R+0DXY-2BC-2BC24QC2A2R2=2BC2AD
106 41 50 94 subdid ABCA0B0R+0DXY2BCAD=2BC2AD
107 104 105 106 3eqtr4d ABCA0B0R+0DXY-2BC-2BC24QC2A2R2=2BCAD
108 107 oveq1d ABCA0B0R+0DXY-2BC-2BC24QC2A2R22Q=2BCAD2Q
109 50 94 subcld ABCA0B0R+0DXYBCAD
110 109 13 41 40 100 divcan5d ABCA0B0R+0DXY2BCAD2Q=BCADQ
111 108 110 eqtrd ABCA0B0R+0DXY-2BC-2BC24QC2A2R22Q=BCADQ
112 111 eqeq2d ABCA0B0R+0DXYY=-2BC-2BC24QC2A2R22QY=BCADQ
113 103 112 orbi12d ABCA0B0R+0DXYY=-2BC+2BC24QC2A2R22QY=-2BC-2BC24QC2A2R22QY=BC+ADQY=BCADQ
114 69 113 bitrd ABCA0B0R+0DXYQY2+2BCY+C2A2R2=0Y=BC+ADQY=BCADQ
115 absid A0AA=A
116 115 ex A0AA=A
117 116 3ad2ant1 ABC0AA=A
118 117 adantr ABCA0B00AA=A
119 118 3ad2ant1 ABCA0B0R+0DXY0AA=A
120 119 impcom 0AABCA0B0R+0DXYA=A
121 120 oveq1d 0AABCA0B0R+0DXYAD=AD
122 121 oveq2d 0AABCA0B0R+0DXYBC+AD=BC+AD
123 122 oveq1d 0AABCA0B0R+0DXYBC+ADQ=BC+ADQ
124 123 eqeq2d 0AABCA0B0R+0DXYY=BC+ADQY=BC+ADQ
125 121 oveq2d 0AABCA0B0R+0DXYBCAD=BCAD
126 125 oveq1d 0AABCA0B0R+0DXYBCADQ=BCADQ
127 126 eqeq2d 0AABCA0B0R+0DXYY=BCADQY=BCADQ
128 124 127 orbi12d 0AABCA0B0R+0DXYY=BC+ADQY=BCADQY=BC+ADQY=BCADQ
129 pm1.4 Y=BC+ADQY=BCADQY=BCADQY=BC+ADQ
130 128 129 syl6bi 0AABCA0B0R+0DXYY=BC+ADQY=BCADQY=BCADQY=BC+ADQ
131 50 adantl ¬0AABCA0B0R+0DXYBC
132 94 adantl ¬0AABCA0B0R+0DXYAD
133 131 132 subnegd ¬0AABCA0B0R+0DXYBCAD=BC+AD
134 74 adantl ¬0AABCA0B0R+0DXYA
135 84 adantl ¬0AABCA0B0R+0DXYD
136 134 135 mulneg1d ¬0AABCA0B0R+0DXYAD=AD
137 89 simp1d ABCA0B0R+0DXYA
138 137 adantl ¬0AABCA0B0R+0DXYA
139 id AA
140 0red A0
141 139 140 ltnled AA<0¬0A
142 ltle A0A<0A0
143 140 142 mpdan AA<0A0
144 141 143 sylbird A¬0AA0
145 144 3ad2ant1 ABC¬0AA0
146 145 adantr ABCA0B0¬0AA0
147 146 3ad2ant1 ABCA0B0R+0DXY¬0AA0
148 147 impcom ¬0AABCA0B0R+0DXYA0
149 138 148 absnidd ¬0AABCA0B0R+0DXYA=A
150 149 negeqd ¬0AABCA0B0R+0DXYA=A
151 57 adantl ¬0AABCA0B0R+0DXYA
152 151 negnegd ¬0AABCA0B0R+0DXYA=A
153 150 152 eqtrd ¬0AABCA0B0R+0DXYA=A
154 153 oveq1d ¬0AABCA0B0R+0DXYAD=AD
155 136 154 eqtr3d ¬0AABCA0B0R+0DXYAD=AD
156 155 oveq2d ¬0AABCA0B0R+0DXYBCAD=BCAD
157 133 156 eqtr3d ¬0AABCA0B0R+0DXYBC+AD=BCAD
158 157 oveq1d ¬0AABCA0B0R+0DXYBC+ADQ=BCADQ
159 158 eqeq2d ¬0AABCA0B0R+0DXYY=BC+ADQY=BCADQ
160 131 132 negsubd ¬0AABCA0B0R+0DXYBC+AD=BCAD
161 155 oveq2d ¬0AABCA0B0R+0DXYBC+AD=BC+AD
162 160 161 eqtr3d ¬0AABCA0B0R+0DXYBCAD=BC+AD
163 162 oveq1d ¬0AABCA0B0R+0DXYBCADQ=BC+ADQ
164 163 eqeq2d ¬0AABCA0B0R+0DXYY=BCADQY=BC+ADQ
165 159 164 orbi12d ¬0AABCA0B0R+0DXYY=BC+ADQY=BCADQY=BCADQY=BC+ADQ
166 165 biimpd ¬0AABCA0B0R+0DXYY=BC+ADQY=BCADQY=BCADQY=BC+ADQ
167 130 166 pm2.61ian ABCA0B0R+0DXYY=BC+ADQY=BCADQY=BCADQY=BC+ADQ
168 114 167 sylbid ABCA0B0R+0DXYQY2+2BCY+C2A2R2=0Y=BCADQY=BC+ADQ
169 7 168 syld ABCA0B0R+0DXYX2+Y2=R2AX+BY=CY=BCADQY=BC+ADQ