Metamath Proof Explorer


Theorem lcfrlem23

Description: Lemma for lcfr . TODO: this proof was built from other proof pieces that may change N{ X , Y } into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem23.s ˙=LSSumU
Assertion lcfrlem23 φ˙XY˙B=˙X+˙Y

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem23.s ˙=LSSumU
15 13 fveq2i ˙B=˙NXY˙X+˙Y
16 eqid DIsoHKW=DIsoHKW
17 eqid joinHKW=joinHKW
18 10 eldifad φXV
19 11 eldifad φYV
20 1 3 4 7 16 9 18 19 dihprrn φNXYranDIsoHKW
21 1 3 9 dvhlmod φULMod
22 4 5 lmodvacl ULModXVYVX+˙YV
23 21 18 19 22 syl3anc φX+˙YV
24 23 snssd φX+˙YV
25 1 16 3 4 2 dochcl KHLWHX+˙YV˙X+˙YranDIsoHKW
26 9 24 25 syl2anc φ˙X+˙YranDIsoHKW
27 1 16 3 4 2 17 9 20 26 dochdmm1 φ˙NXY˙X+˙Y=˙NXYjoinHKW˙˙X+˙Y
28 1 3 2 4 7 9 23 dochocsn φ˙˙X+˙Y=NX+˙Y
29 28 oveq2d φ˙NXYjoinHKW˙˙X+˙Y=˙NXYjoinHKWNX+˙Y
30 prssi XVYVXYV
31 18 19 30 syl2anc φXYV
32 4 7 lspssv ULModXYVNXYV
33 21 31 32 syl2anc φNXYV
34 1 16 3 4 2 dochcl KHLWHNXYV˙NXYranDIsoHKW
35 9 33 34 syl2anc φ˙NXYranDIsoHKW
36 1 3 4 14 7 16 17 9 35 23 dihjat1 φ˙NXYjoinHKWNX+˙Y=˙NXY˙NX+˙Y
37 27 29 36 3eqtrd φ˙NXY˙X+˙Y=˙NXY˙NX+˙Y
38 15 37 eqtrid φ˙B=˙NXY˙NX+˙Y
39 38 ineq2d φNX˙NY˙B=NX˙NY˙NXY˙NX+˙Y
40 eqid LSubSpU=LSubSpU
41 40 lsssssubg ULModLSubSpUSubGrpU
42 21 41 syl φLSubSpUSubGrpU
43 4 40 7 lspsncl ULModXVNXLSubSpU
44 21 18 43 syl2anc φNXLSubSpU
45 4 40 7 lspsncl ULModYVNYLSubSpU
46 21 19 45 syl2anc φNYLSubSpU
47 40 14 lsmcl ULModNXLSubSpUNYLSubSpUNX˙NYLSubSpU
48 21 44 46 47 syl3anc φNX˙NYLSubSpU
49 42 48 sseldd φNX˙NYSubGrpU
50 1 3 4 40 2 dochlss KHLWHNXYV˙NXYLSubSpU
51 9 33 50 syl2anc φ˙NXYLSubSpU
52 42 51 sseldd φ˙NXYSubGrpU
53 4 40 7 lspsncl ULModX+˙YVNX+˙YLSubSpU
54 21 23 53 syl2anc φNX+˙YLSubSpU
55 42 54 sseldd φNX+˙YSubGrpU
56 4 5 7 14 lspsntri ULModXVYVNX+˙YNX˙NY
57 21 18 19 56 syl3anc φNX+˙YNX˙NY
58 14 lsmmod2 NX˙NYSubGrpU˙NXYSubGrpUNX+˙YSubGrpUNX+˙YNX˙NYNX˙NY˙NXY˙NX+˙Y=NX˙NY˙NXY˙NX+˙Y
59 49 52 55 57 58 syl31anc φNX˙NY˙NXY˙NX+˙Y=NX˙NY˙NXY˙NX+˙Y
60 4 7 14 21 18 19 lsmpr φNXY=NX˙NY
61 60 ineq1d φNXY˙NXY=NX˙NY˙NXY
62 4 40 7 21 18 19 lspprcl φNXYLSubSpU
63 1 3 40 6 2 dochnoncon KHLWHNXYLSubSpUNXY˙NXY=0˙
64 9 62 63 syl2anc φNXY˙NXY=0˙
65 61 64 eqtr3d φNX˙NY˙NXY=0˙
66 65 oveq1d φNX˙NY˙NXY˙NX+˙Y=0˙˙NX+˙Y
67 6 14 lsm02 NX+˙YSubGrpU0˙˙NX+˙Y=NX+˙Y
68 55 67 syl φ0˙˙NX+˙Y=NX+˙Y
69 66 68 eqtrd φNX˙NY˙NXY˙NX+˙Y=NX+˙Y
70 39 59 69 3eqtrd φNX˙NY˙B=NX+˙Y
71 70 fveq2d φ˙NX˙NY˙B=˙NX+˙Y
72 1 3 4 14 7 16 9 18 19 dihsmsnrn φNX˙NYranDIsoHKW
73 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φBA
74 4 8 21 73 lsatssv φBV
75 1 16 3 4 2 dochcl KHLWHBV˙BranDIsoHKW
76 9 74 75 syl2anc φ˙BranDIsoHKW
77 1 16 3 4 2 17 9 72 76 dochdmm1 φ˙NX˙NY˙B=˙NX˙NYjoinHKW˙˙B
78 60 fveq2d φ˙NXY=˙NX˙NY
79 1 3 2 4 7 9 31 dochocsp φ˙NXY=˙XY
80 78 79 eqtr3d φ˙NX˙NY=˙XY
81 1 3 16 8 dih1dimat KHLWHBABranDIsoHKW
82 9 73 81 syl2anc φBranDIsoHKW
83 1 16 2 dochoc KHLWHBranDIsoHKW˙˙B=B
84 9 82 83 syl2anc φ˙˙B=B
85 80 84 oveq12d φ˙NX˙NYjoinHKW˙˙B=˙XYjoinHKWB
86 1 16 3 4 2 dochcl KHLWHXYV˙XYranDIsoHKW
87 9 31 86 syl2anc φ˙XYranDIsoHKW
88 1 16 17 3 14 8 9 87 73 dihjat2 φ˙XYjoinHKWB=˙XY˙B
89 77 85 88 3eqtrd φ˙NX˙NY˙B=˙XY˙B
90 1 3 2 4 7 9 24 dochocsp φ˙NX+˙Y=˙X+˙Y
91 71 89 90 3eqtr3d φ˙XY˙B=˙X+˙Y