Description: Lemma for lcfr . Special case of lcfrlem35 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |
|
lcfrlem17.o | |
||
lcfrlem17.u | |
||
lcfrlem17.v | |
||
lcfrlem17.p | |
||
lcfrlem17.z | |
||
lcfrlem17.n | |
||
lcfrlem17.a | |
||
lcfrlem17.k | |
||
lcfrlem17.x | |
||
lcfrlem17.y | |
||
lcfrlem17.ne | |
||
lcfrlem22.b | |
||
lcfrlem24.t | |
||
lcfrlem24.s | |
||
lcfrlem24.q | |
||
lcfrlem24.r | |
||
lcfrlem24.j | |
||
lcfrlem24.ib | |
||
lcfrlem24.l | |
||
lcfrlem25.d | |
||
lcfrlem25.jz | |
||
lcfrlem25.in | |
||
Assertion | lcfrlem25 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |
|
2 | lcfrlem17.o | |
|
3 | lcfrlem17.u | |
|
4 | lcfrlem17.v | |
|
5 | lcfrlem17.p | |
|
6 | lcfrlem17.z | |
|
7 | lcfrlem17.n | |
|
8 | lcfrlem17.a | |
|
9 | lcfrlem17.k | |
|
10 | lcfrlem17.x | |
|
11 | lcfrlem17.y | |
|
12 | lcfrlem17.ne | |
|
13 | lcfrlem22.b | |
|
14 | lcfrlem24.t | |
|
15 | lcfrlem24.s | |
|
16 | lcfrlem24.q | |
|
17 | lcfrlem24.r | |
|
18 | lcfrlem24.j | |
|
19 | lcfrlem24.ib | |
|
20 | lcfrlem24.l | |
|
21 | lcfrlem25.d | |
|
22 | lcfrlem25.jz | |
|
23 | lcfrlem25.in | |
|
24 | eqid | |
|
25 | 1 2 3 4 5 6 7 8 9 10 11 12 13 24 | lcfrlem23 | |
26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | lcfrlem24 | |
27 | inss2 | |
|
28 | 26 27 | eqsstrdi | |
29 | 1 3 9 | dvhlvec | |
30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lcfrlem22 | |
31 | 6 7 8 29 30 19 23 | lsatel | |
32 | eqid | |
|
33 | 1 3 9 | dvhlmod | |
34 | eqid | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 | lcfrlem10 | |
38 | 34 20 32 | lkrlss | |
39 | 33 37 38 | syl2anc | |
40 | 4 8 33 30 | lsatssv | |
41 | 40 19 | sseldd | |
42 | 4 15 16 34 20 33 37 41 | ellkr2 | |
43 | 22 42 | mpbird | |
44 | 32 7 33 39 43 | lspsnel5a | |
45 | 31 44 | eqsstrd | |
46 | 32 | lsssssubg | |
47 | 33 46 | syl | |
48 | 10 | eldifad | |
49 | 11 | eldifad | |
50 | prssi | |
|
51 | 48 49 50 | syl2anc | |
52 | 1 3 4 32 2 | dochlss | |
53 | 9 51 52 | syl2anc | |
54 | 47 53 | sseldd | |
55 | 4 32 7 33 48 49 | lspprcl | |
56 | 1 2 3 4 5 6 7 8 9 10 11 12 | lcfrlem17 | |
57 | 56 | eldifad | |
58 | 57 | snssd | |
59 | 1 3 4 32 2 | dochlss | |
60 | 9 58 59 | syl2anc | |
61 | 32 | lssincl | |
62 | 33 55 60 61 | syl3anc | |
63 | 13 62 | eqeltrid | |
64 | 47 63 | sseldd | |
65 | 47 39 | sseldd | |
66 | 24 | lsmlub | |
67 | 54 64 65 66 | syl3anc | |
68 | 28 45 67 | mpbi2and | |
69 | 25 68 | eqsstrrd | |
70 | eqid | |
|
71 | 1 2 3 4 6 70 9 56 | dochsnshp | |
72 | 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 | lcfrlem13 | |
73 | eldifsni | |
|
74 | 72 73 | syl | |
75 | 70 34 20 21 35 29 37 | lduallkr3 | |
76 | 74 75 | mpbird | |
77 | 70 29 71 76 | lshpcmp | |
78 | 69 77 | mpbid | |