Metamath Proof Explorer


Theorem lcfrlem25

Description: Lemma for lcfr . Special case of lcfrlem35 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem25.jz φJYI=Q
lcfrlem25.in φI0˙
Assertion lcfrlem25 φ˙X+˙Y=LJY

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem25.jz φJYI=Q
23 lcfrlem25.in φI0˙
24 eqid LSSumU=LSSumU
25 1 2 3 4 5 6 7 8 9 10 11 12 13 24 lcfrlem23 φ˙XYLSSumUB=˙X+˙Y
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 lcfrlem24 φ˙XY=LJXLJY
27 inss2 LJXLJYLJY
28 26 27 eqsstrdi φ˙XYLJY
29 1 3 9 dvhlvec φULVec
30 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φBA
31 6 7 8 29 30 19 23 lsatel φB=NI
32 eqid LSubSpU=LSubSpU
33 1 3 9 dvhlmod φULMod
34 eqid LFnlU=LFnlU
35 eqid 0D=0D
36 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
37 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem10 φJYLFnlU
38 34 20 32 lkrlss ULModJYLFnlULJYLSubSpU
39 33 37 38 syl2anc φLJYLSubSpU
40 4 8 33 30 lsatssv φBV
41 40 19 sseldd φIV
42 4 15 16 34 20 33 37 41 ellkr2 φILJYJYI=Q
43 22 42 mpbird φILJY
44 32 7 33 39 43 lspsnel5a φNILJY
45 31 44 eqsstrd φBLJY
46 32 lsssssubg ULModLSubSpUSubGrpU
47 33 46 syl φLSubSpUSubGrpU
48 10 eldifad φXV
49 11 eldifad φYV
50 prssi XVYVXYV
51 48 49 50 syl2anc φXYV
52 1 3 4 32 2 dochlss KHLWHXYV˙XYLSubSpU
53 9 51 52 syl2anc φ˙XYLSubSpU
54 47 53 sseldd φ˙XYSubGrpU
55 4 32 7 33 48 49 lspprcl φNXYLSubSpU
56 1 2 3 4 5 6 7 8 9 10 11 12 lcfrlem17 φX+˙YV0˙
57 56 eldifad φX+˙YV
58 57 snssd φX+˙YV
59 1 3 4 32 2 dochlss KHLWHX+˙YV˙X+˙YLSubSpU
60 9 58 59 syl2anc φ˙X+˙YLSubSpU
61 32 lssincl ULModNXYLSubSpU˙X+˙YLSubSpUNXY˙X+˙YLSubSpU
62 33 55 60 61 syl3anc φNXY˙X+˙YLSubSpU
63 13 62 eqeltrid φBLSubSpU
64 47 63 sseldd φBSubGrpU
65 47 39 sseldd φLJYSubGrpU
66 24 lsmlub ˙XYSubGrpUBSubGrpULJYSubGrpU˙XYLJYBLJY˙XYLSSumUBLJY
67 54 64 65 66 syl3anc φ˙XYLJYBLJY˙XYLSSumUBLJY
68 28 45 67 mpbi2and φ˙XYLSSumUBLJY
69 25 68 eqsstrrd φ˙X+˙YLJY
70 eqid LSHypU=LSHypU
71 1 2 3 4 6 70 9 56 dochsnshp φ˙X+˙YLSHypU
72 1 2 3 4 5 14 15 17 6 34 20 21 35 36 18 9 11 lcfrlem13 φJYfLFnlU|˙˙Lf=Lf0D
73 eldifsni JYfLFnlU|˙˙Lf=Lf0DJY0D
74 72 73 syl φJY0D
75 70 34 20 21 35 29 37 lduallkr3 φLJYLSHypUJY0D
76 74 75 mpbird φLJYLSHypU
77 70 29 71 76 lshpcmp φ˙X+˙YLJY˙X+˙Y=LJY
78 69 77 mpbid φ˙X+˙Y=LJY