Metamath Proof Explorer


Theorem lclkrlem2v

Description: Lemma for lclkr . When the hypotheses of lclkrlem2u and lclkrlem2u are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid , which requires the orthomodular law dihoml4 (Lemma 3.3 of Holland95 p. 214). (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2m.v V = Base U
lclkrlem2m.t · ˙ = U
lclkrlem2m.s S = Scalar U
lclkrlem2m.q × ˙ = S
lclkrlem2m.z 0 ˙ = 0 S
lclkrlem2m.i I = inv r S
lclkrlem2m.m - ˙ = - U
lclkrlem2m.f F = LFnl U
lclkrlem2m.d D = LDual U
lclkrlem2m.p + ˙ = + D
lclkrlem2m.x φ X V
lclkrlem2m.y φ Y V
lclkrlem2m.e φ E F
lclkrlem2m.g φ G F
lclkrlem2n.n N = LSpan U
lclkrlem2n.l L = LKer U
lclkrlem2o.h H = LHyp K
lclkrlem2o.o ˙ = ocH K W
lclkrlem2o.u U = DVecH K W
lclkrlem2o.a ˙ = LSSum U
lclkrlem2o.k φ K HL W H
lclkrlem2q.le φ L E = ˙ X
lclkrlem2q.lg φ L G = ˙ Y
lclkrlem2v.j φ E + ˙ G X = 0 ˙
lclkrlem2v.k φ E + ˙ G Y = 0 ˙
Assertion lclkrlem2v φ L E + ˙ G = V

Proof

Step Hyp Ref Expression
1 lclkrlem2m.v V = Base U
2 lclkrlem2m.t · ˙ = U
3 lclkrlem2m.s S = Scalar U
4 lclkrlem2m.q × ˙ = S
5 lclkrlem2m.z 0 ˙ = 0 S
6 lclkrlem2m.i I = inv r S
7 lclkrlem2m.m - ˙ = - U
8 lclkrlem2m.f F = LFnl U
9 lclkrlem2m.d D = LDual U
10 lclkrlem2m.p + ˙ = + D
11 lclkrlem2m.x φ X V
12 lclkrlem2m.y φ Y V
13 lclkrlem2m.e φ E F
14 lclkrlem2m.g φ G F
15 lclkrlem2n.n N = LSpan U
16 lclkrlem2n.l L = LKer U
17 lclkrlem2o.h H = LHyp K
18 lclkrlem2o.o ˙ = ocH K W
19 lclkrlem2o.u U = DVecH K W
20 lclkrlem2o.a ˙ = LSSum U
21 lclkrlem2o.k φ K HL W H
22 lclkrlem2q.le φ L E = ˙ X
23 lclkrlem2q.lg φ L G = ˙ Y
24 lclkrlem2v.j φ E + ˙ G X = 0 ˙
25 lclkrlem2v.k φ E + ˙ G Y = 0 ˙
26 17 19 21 dvhlmod φ U LMod
27 8 9 10 26 13 14 ldualvaddcl φ E + ˙ G F
28 1 8 16 26 27 lkrssv φ L E + ˙ G V
29 eqid LSubSp U = LSubSp U
30 1 29 15 26 11 12 lspprcl φ N X Y LSubSp U
31 eqid DIsoH K W = DIsoH K W
32 17 19 1 15 31 21 11 12 dihprrn φ N X Y ran DIsoH K W
33 1 29 lssss N X Y LSubSp U N X Y V
34 30 33 syl φ N X Y V
35 17 31 19 1 18 21 34 dochoccl φ N X Y ran DIsoH K W ˙ ˙ N X Y = N X Y
36 32 35 mpbid φ ˙ ˙ N X Y = N X Y
37 17 18 19 1 29 20 21 30 36 dochexmid φ N X Y ˙ ˙ N X Y = V
38 17 19 21 dvhlvec φ U LVec
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 24 25 lclkrlem2n φ N X Y L E + ˙ G
40 11 snssd φ X V
41 12 snssd φ Y V
42 17 19 1 18 dochdmj1 K HL W H X V Y V ˙ X Y = ˙ X ˙ Y
43 21 40 41 42 syl3anc φ ˙ X Y = ˙ X ˙ Y
44 df-pr X Y = X Y
45 44 fveq2i N X Y = N X Y
46 45 fveq2i ˙ N X Y = ˙ N X Y
47 40 41 unssd φ X Y V
48 17 19 18 1 15 21 47 dochocsp φ ˙ N X Y = ˙ X Y
49 46 48 eqtrid φ ˙ N X Y = ˙ X Y
50 22 23 ineq12d φ L E L G = ˙ X ˙ Y
51 43 49 50 3eqtr4d φ ˙ N X Y = L E L G
52 8 16 9 10 26 13 14 lkrin φ L E L G L E + ˙ G
53 51 52 eqsstrd φ ˙ N X Y L E + ˙ G
54 29 lsssssubg U LMod LSubSp U SubGrp U
55 26 54 syl φ LSubSp U SubGrp U
56 55 30 sseldd φ N X Y SubGrp U
57 17 19 1 29 18 dochlss K HL W H N X Y V ˙ N X Y LSubSp U
58 21 34 57 syl2anc φ ˙ N X Y LSubSp U
59 55 58 sseldd φ ˙ N X Y SubGrp U
60 8 16 29 lkrlss U LMod E + ˙ G F L E + ˙ G LSubSp U
61 26 27 60 syl2anc φ L E + ˙ G LSubSp U
62 55 61 sseldd φ L E + ˙ G SubGrp U
63 20 lsmlub N X Y SubGrp U ˙ N X Y SubGrp U L E + ˙ G SubGrp U N X Y L E + ˙ G ˙ N X Y L E + ˙ G N X Y ˙ ˙ N X Y L E + ˙ G
64 56 59 62 63 syl3anc φ N X Y L E + ˙ G ˙ N X Y L E + ˙ G N X Y ˙ ˙ N X Y L E + ˙ G
65 39 53 64 mpbi2and φ N X Y ˙ ˙ N X Y L E + ˙ G
66 37 65 eqsstrrd φ V L E + ˙ G
67 28 66 eqssd φ L E + ˙ G = V