Step |
Hyp |
Ref |
Expression |
1 |
|
lclkrlem2m.v |
|
2 |
|
lclkrlem2m.t |
|
3 |
|
lclkrlem2m.s |
|
4 |
|
lclkrlem2m.q |
|
5 |
|
lclkrlem2m.z |
|
6 |
|
lclkrlem2m.i |
|
7 |
|
lclkrlem2m.m |
|
8 |
|
lclkrlem2m.f |
|
9 |
|
lclkrlem2m.d |
|
10 |
|
lclkrlem2m.p |
|
11 |
|
lclkrlem2m.x |
|
12 |
|
lclkrlem2m.y |
|
13 |
|
lclkrlem2m.e |
|
14 |
|
lclkrlem2m.g |
|
15 |
|
lclkrlem2n.n |
|
16 |
|
lclkrlem2n.l |
|
17 |
|
lclkrlem2o.h |
|
18 |
|
lclkrlem2o.o |
|
19 |
|
lclkrlem2o.u |
|
20 |
|
lclkrlem2o.a |
|
21 |
|
lclkrlem2o.k |
|
22 |
|
lclkrlem2q.le |
|
23 |
|
lclkrlem2q.lg |
|
24 |
|
lclkrlem2v.j |
|
25 |
|
lclkrlem2v.k |
|
26 |
17 19 21
|
dvhlmod |
|
27 |
8 9 10 26 13 14
|
ldualvaddcl |
|
28 |
1 8 16 26 27
|
lkrssv |
|
29 |
|
eqid |
|
30 |
1 29 15 26 11 12
|
lspprcl |
|
31 |
|
eqid |
|
32 |
17 19 1 15 31 21 11 12
|
dihprrn |
|
33 |
1 29
|
lssss |
|
34 |
30 33
|
syl |
|
35 |
17 31 19 1 18 21 34
|
dochoccl |
|
36 |
32 35
|
mpbid |
|
37 |
17 18 19 1 29 20 21 30 36
|
dochexmid |
|
38 |
17 19 21
|
dvhlvec |
|
39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 24 25
|
lclkrlem2n |
|
40 |
11
|
snssd |
|
41 |
12
|
snssd |
|
42 |
17 19 1 18
|
dochdmj1 |
|
43 |
21 40 41 42
|
syl3anc |
|
44 |
|
df-pr |
|
45 |
44
|
fveq2i |
|
46 |
45
|
fveq2i |
|
47 |
40 41
|
unssd |
|
48 |
17 19 18 1 15 21 47
|
dochocsp |
|
49 |
46 48
|
eqtrid |
|
50 |
22 23
|
ineq12d |
|
51 |
43 49 50
|
3eqtr4d |
|
52 |
8 16 9 10 26 13 14
|
lkrin |
|
53 |
51 52
|
eqsstrd |
|
54 |
29
|
lsssssubg |
|
55 |
26 54
|
syl |
|
56 |
55 30
|
sseldd |
|
57 |
17 19 1 29 18
|
dochlss |
|
58 |
21 34 57
|
syl2anc |
|
59 |
55 58
|
sseldd |
|
60 |
8 16 29
|
lkrlss |
|
61 |
26 27 60
|
syl2anc |
|
62 |
55 61
|
sseldd |
|
63 |
20
|
lsmlub |
|
64 |
56 59 62 63
|
syl3anc |
|
65 |
39 53 64
|
mpbi2and |
|
66 |
37 65
|
eqsstrrd |
|
67 |
28 66
|
eqssd |
|