Metamath Proof Explorer


Theorem lgamgulm2

Description: Rewrite the limit of the sequence G in terms of the log-Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamgulm.r φR
lgamgulm.u U=x|xRk01Rx+k
lgamgulm.g G=mzUzlogm+1mlogzm+1
Assertion lgamgulm2 φzUlogΓzseq1f+GuUzUlogΓz+logz

Proof

Step Hyp Ref Expression
1 lgamgulm.r φR
2 lgamgulm.u U=x|xRk01Rx+k
3 lgamgulm.g G=mzUzlogm+1mlogzm+1
4 1 2 lgamgulmlem1 φU
5 4 sselda φzUz
6 ovex nzlogn+1nlogzn+1logzV
7 df-lgam logΓ=znzlogn+1nlogzn+1logz
8 7 fvmpt2 znzlogn+1nlogzn+1logzVlogΓz=nzlogn+1nlogzn+1logz
9 5 6 8 sylancl φzUlogΓz=nzlogn+1nlogzn+1logz
10 nnuz =1
11 1zzd φzU1
12 oveq1 m=nm+1=n+1
13 id m=nm=n
14 12 13 oveq12d m=nm+1m=n+1n
15 14 fveq2d m=nlogm+1m=logn+1n
16 15 oveq2d m=nzlogm+1m=zlogn+1n
17 oveq2 m=nzm=zn
18 17 fvoveq1d m=nlogzm+1=logzn+1
19 16 18 oveq12d m=nzlogm+1mlogzm+1=zlogn+1nlogzn+1
20 eqid mzlogm+1mlogzm+1=mzlogm+1mlogzm+1
21 ovex zlogn+1nlogzn+1V
22 19 20 21 fvmpt nmzlogm+1mlogzm+1n=zlogn+1nlogzn+1
23 22 adantl φzUnmzlogm+1mlogzm+1n=zlogn+1nlogzn+1
24 5 eldifad φzUz
25 24 adantr φzUnz
26 simpr φzUnn
27 26 peano2nnd φzUnn+1
28 27 nnrpd φzUnn+1+
29 26 nnrpd φzUnn+
30 28 29 rpdivcld φzUnn+1n+
31 30 relogcld φzUnlogn+1n
32 31 recnd φzUnlogn+1n
33 25 32 mulcld φzUnzlogn+1n
34 26 nncnd φzUnn
35 26 nnne0d φzUnn0
36 25 34 35 divcld φzUnzn
37 1cnd φzUn1
38 36 37 addcld φzUnzn+1
39 5 adantr φzUnz
40 39 26 dmgmdivn0 φzUnzn+10
41 38 40 logcld φzUnlogzn+1
42 33 41 subcld φzUnzlogn+1nlogzn+1
43 1z 1
44 seqfn 1seq1f+GFn1
45 43 44 ax-mp seq1f+GFn1
46 10 fneq2i seq1f+GFnseq1f+GFn1
47 45 46 mpbir seq1f+GFn
48 1 2 3 lgamgulm φseq1f+GdomuU
49 ulmdm seq1f+GdomuUseq1f+GuUuUseq1f+G
50 48 49 sylib φseq1f+GuUuUseq1f+G
51 ulmf2 seq1f+GFnseq1f+GuUuUseq1f+Gseq1f+G:U
52 47 50 51 sylancr φseq1f+G:U
53 52 adantr φzUseq1f+G:U
54 simpr φzUzU
55 seqex seq1+mzlogm+1mlogzm+1V
56 55 a1i φzUseq1+mzlogm+1mlogzm+1V
57 3 a1i φzUnG=mzUzlogm+1mlogzm+1
58 57 seqeq3d φzUnseq1f+G=seq1f+mzUzlogm+1mlogzm+1
59 58 fveq1d φzUnseq1f+Gn=seq1f+mzUzlogm+1mlogzm+1n
60 cnex V
61 2 60 rabex2 UV
62 61 a1i φnUV
63 simpr φnn
64 63 10 eleqtrdi φnn1
65 fz1ssnn 1n
66 65 a1i φn1n
67 ovexd φnmzUzlogm+1mlogzm+1V
68 62 64 66 67 seqof2 φnseq1f+mzUzlogm+1mlogzm+1n=zUseq1+mzlogm+1mlogzm+1n
69 68 adantlr φzUnseq1f+mzUzlogm+1mlogzm+1n=zUseq1+mzlogm+1mlogzm+1n
70 59 69 eqtrd φzUnseq1f+Gn=zUseq1+mzlogm+1mlogzm+1n
71 70 fveq1d φzUnseq1f+Gnz=zUseq1+mzlogm+1mlogzm+1nz
72 54 adantr φzUnzU
73 fvex seq1+mzlogm+1mlogzm+1nV
74 eqid zUseq1+mzlogm+1mlogzm+1n=zUseq1+mzlogm+1mlogzm+1n
75 74 fvmpt2 zUseq1+mzlogm+1mlogzm+1nVzUseq1+mzlogm+1mlogzm+1nz=seq1+mzlogm+1mlogzm+1n
76 72 73 75 sylancl φzUnzUseq1+mzlogm+1mlogzm+1nz=seq1+mzlogm+1mlogzm+1n
77 71 76 eqtrd φzUnseq1f+Gnz=seq1+mzlogm+1mlogzm+1n
78 50 adantr φzUseq1f+GuUuUseq1f+G
79 10 11 53 54 56 77 78 ulmclm φzUseq1+mzlogm+1mlogzm+1uUseq1f+Gz
80 10 11 23 42 79 isumclim φzUnzlogn+1nlogzn+1=uUseq1f+Gz
81 ulmcl seq1f+GuUuUseq1f+GuUseq1f+G:U
82 50 81 syl φuUseq1f+G:U
83 82 ffvelcdmda φzUuUseq1f+Gz
84 80 83 eqeltrd φzUnzlogn+1nlogzn+1
85 5 dmgmn0 φzUz0
86 24 85 logcld φzUlogz
87 84 86 subcld φzUnzlogn+1nlogzn+1logz
88 9 87 eqeltrd φzUlogΓz
89 88 ralrimiva φzUlogΓz
90 ffn uUseq1f+G:UuUseq1f+GFnU
91 50 81 90 3syl φuUseq1f+GFnU
92 nfcv _zuU
93 nfcv _z1
94 nfcv _zf+
95 nfcv _z
96 nfmpt1 _zzUzlogm+1mlogzm+1
97 95 96 nfmpt _zmzUzlogm+1mlogzm+1
98 3 97 nfcxfr _zG
99 93 94 98 nfseq _zseq1f+G
100 92 99 nffv _zuUseq1f+G
101 100 dffn5f uUseq1f+GFnUuUseq1f+G=zUuUseq1f+Gz
102 91 101 sylib φuUseq1f+G=zUuUseq1f+Gz
103 9 oveq1d φzUlogΓz+logz=nzlogn+1nlogzn+1-logz+logz
104 84 86 npcand φzUnzlogn+1nlogzn+1-logz+logz=nzlogn+1nlogzn+1
105 103 104 80 3eqtrrd φzUuUseq1f+Gz=logΓz+logz
106 105 mpteq2dva φzUuUseq1f+Gz=zUlogΓz+logz
107 102 106 eqtrd φuUseq1f+G=zUlogΓz+logz
108 50 107 breqtrd φseq1f+GuUzUlogΓz+logz
109 89 108 jca φzUlogΓzseq1f+GuUzUlogΓz+logz