Metamath Proof Explorer


Theorem liminflimsupclim

Description: A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflimsupclim.1 φM
liminflimsupclim.2 Z=M
liminflimsupclim.3 φF:Z
liminflimsupclim.4 φlim infF
liminflimsupclim.5 φlim supFlim infF
Assertion liminflimsupclim φFdom

Proof

Step Hyp Ref Expression
1 liminflimsupclim.1 φM
2 liminflimsupclim.2 Z=M
3 liminflimsupclim.3 φF:Z
4 liminflimsupclim.4 φlim infF
5 liminflimsupclim.5 φlim supFlim infF
6 climrel Rel
7 6 a1i φRel
8 2 fvexi ZV
9 8 a1i φZV
10 3 9 fexd φFV
11 10 limsupcld φlim supF*
12 4 rexrd φlim infF*
13 3 frexr φF:Z*
14 1 2 13 liminflelimsupuz φlim infFlim supF
15 11 12 5 14 xrletrid φlim supF=lim infF
16 15 4 eqeltrd φlim supF
17 16 recnd φlim supF
18 nfcv _kF
19 1 adantr φx+M
20 3 adantr φx+F:Z
21 4 adantr φx+lim infF
22 simpr φx+x+
23 18 19 2 20 21 22 liminflt φx+jZkjlim infF<Fk+x
24 21 ad2antrr φx+jZkjlim infF
25 3 ad2antrr φjZkjF:Z
26 2 uztrn2 jZkjkZ
27 26 adantll φjZkjkZ
28 25 27 ffvelcdmd φjZkjFk
29 28 adantllr φx+jZkjFk
30 22 ad2antrr φx+jZkjx+
31 rpre x+x
32 30 31 syl φx+jZkjx
33 24 29 32 ltsubadd2d φx+jZkjlim infFFk<xlim infF<Fk+x
34 33 bicomd φx+jZkjlim infF<Fk+xlim infFFk<x
35 28 recnd φjZkjFk
36 15 eqcomd φlim infF=lim supF
37 36 17 eqeltrd φlim infF
38 37 ad2antrr φjZkjlim infF
39 35 38 negsubdi2d φjZkjFklim infF=lim infFFk
40 39 breq1d φjZkjFklim infF<xlim infFFk<x
41 40 adantllr φx+jZkjFklim infF<xlim infFFk<x
42 41 bicomd φx+jZkjlim infFFk<xFklim infF<x
43 29 24 resubcld φx+jZkjFklim infF
44 ltnegcon1 Fklim infFxFklim infF<xx<Fklim infF
45 43 32 44 syl2anc φx+jZkjFklim infF<xx<Fklim infF
46 42 45 bitrd φx+jZkjlim infFFk<xx<Fklim infF
47 36 oveq2d φFklim infF=Fklim supF
48 47 breq2d φx<Fklim infFx<Fklim supF
49 48 ad3antrrr φx+jZkjx<Fklim infFx<Fklim supF
50 34 46 49 3bitrd φx+jZkjlim infF<Fk+xx<Fklim supF
51 50 ralbidva φx+jZkjlim infF<Fk+xkjx<Fklim supF
52 51 rexbidva φx+jZkjlim infF<Fk+xjZkjx<Fklim supF
53 23 52 mpbid φx+jZkjx<Fklim supF
54 16 adantr φx+lim supF
55 18 19 2 20 54 22 limsupgt φx+jZkjFkx<lim supF
56 54 ad2antrr φx+jZkjlim supF
57 ltsub23 Fkxlim supFFkx<lim supFFklim supF<x
58 29 32 56 57 syl3anc φx+jZkjFkx<lim supFFklim supF<x
59 58 ralbidva φx+jZkjFkx<lim supFkjFklim supF<x
60 59 rexbidva φx+jZkjFkx<lim supFjZkjFklim supF<x
61 55 60 mpbid φx+jZkjFklim supF<x
62 53 61 jca φx+jZkjx<Fklim supFjZkjFklim supF<x
63 2 rexanuz2 jZkjx<Fklim supFFklim supF<xjZkjx<Fklim supFjZkjFklim supF<x
64 62 63 sylibr φx+jZkjx<Fklim supFFklim supF<x
65 simplll φx+jZkjφ
66 simpllr φx+jZkjx+
67 26 adantll φx+jZkjkZ
68 simpr φx+kZx<Fklim supFFklim supF<xx<Fklim supFFklim supF<x
69 3 ffvelcdmda φkZFk
70 16 adantr φkZlim supF
71 69 70 resubcld φkZFklim supF
72 71 adantlr φx+kZFklim supF
73 31 ad2antlr φx+kZx
74 abslt Fklim supFxFklim supF<xx<Fklim supFFklim supF<x
75 72 73 74 syl2anc φx+kZFklim supF<xx<Fklim supFFklim supF<x
76 75 adantr φx+kZx<Fklim supFFklim supF<xFklim supF<xx<Fklim supFFklim supF<x
77 68 76 mpbird φx+kZx<Fklim supFFklim supF<xFklim supF<x
78 77 ex φx+kZx<Fklim supFFklim supF<xFklim supF<x
79 65 66 67 78 syl21anc φx+jZkjx<Fklim supFFklim supF<xFklim supF<x
80 79 ralimdva φx+jZkjx<Fklim supFFklim supF<xkjFklim supF<x
81 80 reximdva φx+jZkjx<Fklim supFFklim supF<xjZkjFklim supF<x
82 64 81 mpd φx+jZkjFklim supF<x
83 82 ralrimiva φx+jZkjFklim supF<x
84 17 83 jca φlim supFx+jZkjFklim supF<x
85 ax-resscn
86 85 a1i φ
87 3 86 fssd φF:Z
88 18 1 2 87 climuz φFlim supFlim supFx+jZkjFklim supF<x
89 84 88 mpbird φFlim supF
90 releldm RelFlim supFFdom
91 7 89 90 syl2anc φFdom