Metamath Proof Explorer


Theorem liminflimsupclim

Description: A sequence of real numbers converges if its inferior limit is real, and it is greater than or equal to the superior limit (in such a case, they are actually equal, see liminflelimsupuz ). (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflimsupclim.1 φ M
liminflimsupclim.2 Z = M
liminflimsupclim.3 φ F : Z
liminflimsupclim.4 φ lim inf F
liminflimsupclim.5 φ lim sup F lim inf F
Assertion liminflimsupclim φ F dom

Proof

Step Hyp Ref Expression
1 liminflimsupclim.1 φ M
2 liminflimsupclim.2 Z = M
3 liminflimsupclim.3 φ F : Z
4 liminflimsupclim.4 φ lim inf F
5 liminflimsupclim.5 φ lim sup F lim inf F
6 climrel Rel
7 6 a1i φ Rel
8 2 fvexi Z V
9 8 a1i φ Z V
10 3 9 fexd φ F V
11 10 limsupcld φ lim sup F *
12 4 rexrd φ lim inf F *
13 3 frexr φ F : Z *
14 1 2 13 liminflelimsupuz φ lim inf F lim sup F
15 11 12 5 14 xrletrid φ lim sup F = lim inf F
16 15 4 eqeltrd φ lim sup F
17 16 recnd φ lim sup F
18 nfcv _ k F
19 1 adantr φ x + M
20 3 adantr φ x + F : Z
21 4 adantr φ x + lim inf F
22 simpr φ x + x +
23 18 19 2 20 21 22 liminflt φ x + j Z k j lim inf F < F k + x
24 21 ad2antrr φ x + j Z k j lim inf F
25 3 ad2antrr φ j Z k j F : Z
26 2 uztrn2 j Z k j k Z
27 26 adantll φ j Z k j k Z
28 25 27 ffvelrnd φ j Z k j F k
29 28 adantllr φ x + j Z k j F k
30 22 ad2antrr φ x + j Z k j x +
31 rpre x + x
32 30 31 syl φ x + j Z k j x
33 24 29 32 ltsubadd2d φ x + j Z k j lim inf F F k < x lim inf F < F k + x
34 33 bicomd φ x + j Z k j lim inf F < F k + x lim inf F F k < x
35 28 recnd φ j Z k j F k
36 15 eqcomd φ lim inf F = lim sup F
37 36 17 eqeltrd φ lim inf F
38 37 ad2antrr φ j Z k j lim inf F
39 35 38 negsubdi2d φ j Z k j F k lim inf F = lim inf F F k
40 39 breq1d φ j Z k j F k lim inf F < x lim inf F F k < x
41 40 adantllr φ x + j Z k j F k lim inf F < x lim inf F F k < x
42 41 bicomd φ x + j Z k j lim inf F F k < x F k lim inf F < x
43 29 24 resubcld φ x + j Z k j F k lim inf F
44 ltnegcon1 F k lim inf F x F k lim inf F < x x < F k lim inf F
45 43 32 44 syl2anc φ x + j Z k j F k lim inf F < x x < F k lim inf F
46 42 45 bitrd φ x + j Z k j lim inf F F k < x x < F k lim inf F
47 36 oveq2d φ F k lim inf F = F k lim sup F
48 47 breq2d φ x < F k lim inf F x < F k lim sup F
49 48 ad3antrrr φ x + j Z k j x < F k lim inf F x < F k lim sup F
50 34 46 49 3bitrd φ x + j Z k j lim inf F < F k + x x < F k lim sup F
51 50 ralbidva φ x + j Z k j lim inf F < F k + x k j x < F k lim sup F
52 51 rexbidva φ x + j Z k j lim inf F < F k + x j Z k j x < F k lim sup F
53 23 52 mpbid φ x + j Z k j x < F k lim sup F
54 16 adantr φ x + lim sup F
55 18 19 2 20 54 22 limsupgt φ x + j Z k j F k x < lim sup F
56 54 ad2antrr φ x + j Z k j lim sup F
57 ltsub23 F k x lim sup F F k x < lim sup F F k lim sup F < x
58 29 32 56 57 syl3anc φ x + j Z k j F k x < lim sup F F k lim sup F < x
59 58 ralbidva φ x + j Z k j F k x < lim sup F k j F k lim sup F < x
60 59 rexbidva φ x + j Z k j F k x < lim sup F j Z k j F k lim sup F < x
61 55 60 mpbid φ x + j Z k j F k lim sup F < x
62 53 61 jca φ x + j Z k j x < F k lim sup F j Z k j F k lim sup F < x
63 2 rexanuz2 j Z k j x < F k lim sup F F k lim sup F < x j Z k j x < F k lim sup F j Z k j F k lim sup F < x
64 62 63 sylibr φ x + j Z k j x < F k lim sup F F k lim sup F < x
65 simplll φ x + j Z k j φ
66 simpllr φ x + j Z k j x +
67 26 adantll φ x + j Z k j k Z
68 simpr φ x + k Z x < F k lim sup F F k lim sup F < x x < F k lim sup F F k lim sup F < x
69 3 ffvelrnda φ k Z F k
70 16 adantr φ k Z lim sup F
71 69 70 resubcld φ k Z F k lim sup F
72 71 adantlr φ x + k Z F k lim sup F
73 31 ad2antlr φ x + k Z x
74 abslt F k lim sup F x F k lim sup F < x x < F k lim sup F F k lim sup F < x
75 72 73 74 syl2anc φ x + k Z F k lim sup F < x x < F k lim sup F F k lim sup F < x
76 75 adantr φ x + k Z x < F k lim sup F F k lim sup F < x F k lim sup F < x x < F k lim sup F F k lim sup F < x
77 68 76 mpbird φ x + k Z x < F k lim sup F F k lim sup F < x F k lim sup F < x
78 77 ex φ x + k Z x < F k lim sup F F k lim sup F < x F k lim sup F < x
79 65 66 67 78 syl21anc φ x + j Z k j x < F k lim sup F F k lim sup F < x F k lim sup F < x
80 79 ralimdva φ x + j Z k j x < F k lim sup F F k lim sup F < x k j F k lim sup F < x
81 80 reximdva φ x + j Z k j x < F k lim sup F F k lim sup F < x j Z k j F k lim sup F < x
82 64 81 mpd φ x + j Z k j F k lim sup F < x
83 82 ralrimiva φ x + j Z k j F k lim sup F < x
84 17 83 jca φ lim sup F x + j Z k j F k lim sup F < x
85 ax-resscn
86 85 a1i φ
87 3 86 fssd φ F : Z
88 18 1 2 87 climuz φ F lim sup F lim sup F x + j Z k j F k lim sup F < x
89 84 88 mpbird φ F lim sup F
90 releldm Rel F lim sup F F dom
91 7 89 90 syl2anc φ F dom