Metamath Proof Explorer


Theorem lindslinindimp2lem4

Description: Lemma 4 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019) (Proof shortened by II, 16-Feb-2023)

Ref Expression
Hypotheses lindslinind.r R=ScalarM
lindslinind.b B=BaseR
lindslinind.0 0˙=0R
lindslinind.z Z=0M
lindslinind.y Y=invgRfx
lindslinind.g G=fSx
Assertion lindslinindimp2lem4 SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMySxfyMy=YMx

Proof

Step Hyp Ref Expression
1 lindslinind.r R=ScalarM
2 lindslinind.b B=BaseR
3 lindslinind.0 0˙=0R
4 lindslinind.z Z=0M
5 lindslinind.y Y=invgRfx
6 lindslinind.g G=fSx
7 simpr SVMLModMLMod
8 7 adantr SVMLModSBaseMxSMLMod
9 simprl SVMLModSBaseMxSSBaseM
10 elpwg SVS𝒫BaseMSBaseM
11 10 ad2antrr SVMLModSBaseMxSS𝒫BaseMSBaseM
12 9 11 mpbird SVMLModSBaseMxSS𝒫BaseM
13 simpr SBaseMxSxS
14 13 adantl SVMLModSBaseMxSxS
15 8 12 14 3jca SVMLModSBaseMxSMLModS𝒫BaseMxS
16 15 adantl fBSfinSupp0˙fSVMLModSBaseMxSMLModS𝒫BaseMxS
17 simpl fBSfinSupp0˙fSVMLModSBaseMxSfBSfinSupp0˙f
18 6 a1i fBSfinSupp0˙fSVMLModSBaseMxSG=fSx
19 eqid BaseM=BaseM
20 eqid M=M
21 eqid +M=+M
22 19 1 2 20 21 3 lincdifsn MLModS𝒫BaseMxSfBSfinSupp0˙fG=fSxflinCMS=GlinCMSx+MfxMx
23 16 17 18 22 syl3anc fBSfinSupp0˙fSVMLModSBaseMxSflinCMS=GlinCMSx+MfxMx
24 23 eqeq1d fBSfinSupp0˙fSVMLModSBaseMxSflinCMS=ZGlinCMSx+MfxMx=Z
25 lmodgrp MLModMGrp
26 25 adantl SVMLModMGrp
27 26 ad2antrl fBSfinSupp0˙fSVMLModSBaseMxSMGrp
28 7 ad2antrl fBSfinSupp0˙fSVMLModSBaseMxSMLMod
29 elmapi fBSf:SB
30 ffvelcdm f:SBxSfxB
31 30 expcom xSf:SBfxB
32 31 ad2antll SVMLModSBaseMxSf:SBfxB
33 29 32 syl5com fBSSVMLModSBaseMxSfxB
34 33 adantr fBSfinSupp0˙fSVMLModSBaseMxSfxB
35 34 imp fBSfinSupp0˙fSVMLModSBaseMxSfxB
36 ssel2 SBaseMxSxBaseM
37 36 ad2antll fBSfinSupp0˙fSVMLModSBaseMxSxBaseM
38 19 1 20 2 lmodvscl MLModfxBxBaseMfxMxBaseM
39 28 35 37 38 syl3anc fBSfinSupp0˙fSVMLModSBaseMxSfxMxBaseM
40 difexg SVSxV
41 40 ad2antrr SVMLModSBaseMxSSxV
42 ssdifss SBaseMSxBaseM
43 42 ad2antrl SVMLModSBaseMxSSxBaseM
44 41 43 jca SVMLModSBaseMxSSxVSxBaseM
45 44 adantl fBSfinSupp0˙fSVMLModSBaseMxSSxVSxBaseM
46 simprl fBSfinSupp0˙fSVMLModSBaseMxSSVMLMod
47 simpl SBaseMxSSBaseM
48 47 ad2antll fBSfinSupp0˙fSVMLModSBaseMxSSBaseM
49 13 ad2antll fBSfinSupp0˙fSVMLModSBaseMxSxS
50 simpl fBSfinSupp0˙ffBS
51 50 adantr fBSfinSupp0˙fSVMLModSBaseMxSfBS
52 1 2 3 4 5 6 lindslinindimp2lem2 SVMLModSBaseMxSfBSGBSx
53 46 48 49 51 52 syl13anc fBSfinSupp0˙fSVMLModSBaseMxSGBSx
54 simpr SVMLModSBaseMxSSBaseMxS
55 54 adantl fBSfinSupp0˙fSVMLModSBaseMxSSBaseMxS
56 1 2 3 4 5 6 lindslinindimp2lem3 SVMLModSBaseMxSfBSfinSupp0˙ffinSupp0˙G
57 46 55 17 56 syl3anc fBSfinSupp0˙fSVMLModSBaseMxSfinSupp0˙G
58 53 57 jca fBSfinSupp0˙fSVMLModSBaseMxSGBSxfinSupp0˙G
59 19 1 2 3 lincfsuppcl MLModSxVSxBaseMGBSxfinSupp0˙GGlinCMSxBaseM
60 28 45 58 59 syl3anc fBSfinSupp0˙fSVMLModSBaseMxSGlinCMSxBaseM
61 eqid invgM=invgM
62 19 21 4 61 grpinvid2 MGrpfxMxBaseMGlinCMSxBaseMinvgMfxMx=GlinCMSxGlinCMSx+MfxMx=Z
63 27 39 60 62 syl3anc fBSfinSupp0˙fSVMLModSBaseMxSinvgMfxMx=GlinCMSxGlinCMSx+MfxMx=Z
64 24 63 bitr4d fBSfinSupp0˙fSVMLModSBaseMxSflinCMS=ZinvgMfxMx=GlinCMSx
65 eqcom invgMfxMx=GlinCMSxGlinCMSx=invgMfxMx
66 1 fveq2i BaseR=BaseScalarM
67 2 66 eqtri B=BaseScalarM
68 67 oveq1i BSx=BaseScalarMSx
69 53 68 eleqtrdi fBSfinSupp0˙fSVMLModSBaseMxSGBaseScalarMSx
70 41 43 elpwd SVMLModSBaseMxSSx𝒫BaseM
71 70 adantl fBSfinSupp0˙fSVMLModSBaseMxSSx𝒫BaseM
72 lincval MLModGBaseScalarMSxSx𝒫BaseMGlinCMSx=MySxGyMy
73 28 69 71 72 syl3anc fBSfinSupp0˙fSVMLModSBaseMxSGlinCMSx=MySxGyMy
74 73 eqeq1d fBSfinSupp0˙fSVMLModSBaseMxSGlinCMSx=invgMfxMxMySxGyMy=invgMfxMx
75 6 fveq1i Gy=fSxy
76 75 a1i fBSfinSupp0˙fSVMLModSBaseMxSySxGy=fSxy
77 fvres ySxfSxy=fy
78 77 adantl fBSfinSupp0˙fSVMLModSBaseMxSySxfSxy=fy
79 76 78 eqtrd fBSfinSupp0˙fSVMLModSBaseMxSySxGy=fy
80 79 oveq1d fBSfinSupp0˙fSVMLModSBaseMxSySxGyMy=fyMy
81 80 mpteq2dva fBSfinSupp0˙fSVMLModSBaseMxSySxGyMy=ySxfyMy
82 81 oveq2d fBSfinSupp0˙fSVMLModSBaseMxSMySxGyMy=MySxfyMy
83 eqid invgR=invgR
84 19 1 20 61 2 83 28 37 35 lmodvsneg fBSfinSupp0˙fSVMLModSBaseMxSinvgMfxMx=invgRfxMx
85 5 eqcomi invgRfx=Y
86 85 a1i fBSfinSupp0˙fSVMLModSBaseMxSinvgRfx=Y
87 86 oveq1d fBSfinSupp0˙fSVMLModSBaseMxSinvgRfxMx=YMx
88 84 87 eqtrd fBSfinSupp0˙fSVMLModSBaseMxSinvgMfxMx=YMx
89 82 88 eqeq12d fBSfinSupp0˙fSVMLModSBaseMxSMySxGyMy=invgMfxMxMySxfyMy=YMx
90 89 biimpd fBSfinSupp0˙fSVMLModSBaseMxSMySxGyMy=invgMfxMxMySxfyMy=YMx
91 74 90 sylbid fBSfinSupp0˙fSVMLModSBaseMxSGlinCMSx=invgMfxMxMySxfyMy=YMx
92 65 91 biimtrid fBSfinSupp0˙fSVMLModSBaseMxSinvgMfxMx=GlinCMSxMySxfyMy=YMx
93 64 92 sylbid fBSfinSupp0˙fSVMLModSBaseMxSflinCMS=ZMySxfyMy=YMx
94 93 ex fBSfinSupp0˙fSVMLModSBaseMxSflinCMS=ZMySxfyMy=YMx
95 94 com23 fBSfinSupp0˙fflinCMS=ZSVMLModSBaseMxSMySxfyMy=YMx
96 95 3impia fBSfinSupp0˙fflinCMS=ZSVMLModSBaseMxSMySxfyMy=YMx
97 96 com12 SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMySxfyMy=YMx
98 97 3impia SVMLModSBaseMxSfBSfinSupp0˙fflinCMS=ZMySxfyMy=YMx