Metamath Proof Explorer


Theorem logdivsum

Description: Asymptotic analysis of sum_ n <_ x , log n / n = ( log x ) ^ 2 / 2 + L + O ( log x / x ) . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypothesis logdivsum.1 F=y+i=1ylogiilogy22
Assertion logdivsum F:+FdomFLA+eAFALlogAA

Proof

Step Hyp Ref Expression
1 logdivsum.1 F=y+i=1ylogiilogy22
2 ioorp 0+∞=+
3 2 eqcomi +=0+∞
4 nnuz =1
5 1zzd 1
6 ere e
7 6 a1i e
8 0re 0
9 epos 0<e
10 8 6 9 ltleii 0e
11 10 a1i 0e
12 1re 1
13 addge02 1e0e1e+1
14 12 6 13 mp2an 0e1e+1
15 11 14 sylib 1e+1
16 8 a1i 0
17 relogcl y+logy
18 17 adantl y+logy
19 18 resqcld y+logy2
20 19 rehalfcld y+logy22
21 rerpdivcl logyy+logyy
22 17 21 mpancom y+logyy
23 22 adantl y+logyy
24 nnrp yy+
25 24 23 sylan2 ylogyy
26 reelprrecn
27 26 a1i
28 cnelprrecn
29 28 a1i
30 18 recnd y+logy
31 ovexd y+1yV
32 sqcl xx2
33 32 adantl xx2
34 33 halfcld xx22
35 simpr xx
36 relogf1o log+:+1-1 onto
37 f1of log+:+1-1 ontolog+:+
38 36 37 mp1i log+:+
39 38 feqmptd log+=y+log+y
40 fvres y+log+y=logy
41 40 mpteq2ia y+log+y=y+logy
42 39 41 eqtrdi log+=y+logy
43 42 oveq2d Dlog+=dy+logydy
44 dvrelog Dlog+=y+1y
45 43 44 eqtr3di dy+logydy=y+1y
46 ovexd x2xV
47 2nn 2
48 dvexp 2dxx2dx=x2x21
49 47 48 mp1i dxx2dx=x2x21
50 2m1e1 21=1
51 50 oveq2i x21=x1
52 exp1 xx1=x
53 52 adantl xx1=x
54 51 53 eqtrid xx21=x
55 54 oveq2d x2x21=2x
56 55 mpteq2dva x2x21=x2x
57 49 56 eqtrd dxx2dx=x2x
58 2cnd 2
59 2ne0 20
60 59 a1i 20
61 29 33 46 57 58 60 dvmptdivc dxx22dx=x2x2
62 2cn 2
63 divcan3 x2202x2=x
64 62 59 63 mp3an23 x2x2=x
65 64 adantl x2x2=x
66 65 mpteq2dva x2x2=xx
67 61 66 eqtrd dxx22dx=xx
68 oveq1 x=logyx2=logy2
69 68 oveq1d x=logyx22=logy22
70 id x=logyx=logy
71 27 29 30 31 34 35 45 67 69 70 dvmptco dy+logy22dy=y+logy1y
72 rpcn y+y
73 72 adantl y+y
74 rpne0 y+y0
75 74 adantl y+y0
76 30 73 75 divrecd y+logyy=logy1y
77 76 mpteq2dva y+logyy=y+logy1y
78 71 77 eqtr4d dy+logy22dy=y+logyy
79 fveq2 y=ilogy=logi
80 id y=iy=i
81 79 80 oveq12d y=ilogyy=logii
82 simp3r y+i+eyyiyi
83 simp2l y+i+eyyiy+
84 83 rpred y+i+eyyiy
85 simp3l y+i+eyyiey
86 simp2r y+i+eyyii+
87 86 rpred y+i+eyyii
88 6 a1i y+i+eyyie
89 88 84 87 85 82 letrd y+i+eyyiei
90 logdivle yeyieiyilogiilogyy
91 84 85 87 89 90 syl22anc y+i+eyyiyilogiilogyy
92 82 91 mpbid y+i+eyyilogiilogyy
93 72 cxp1d y+y1=y
94 93 oveq2d y+logyy1=logyy
95 94 mpteq2ia y+logyy1=y+logyy
96 1rp 1+
97 cxploglim 1+y+logyy10
98 96 97 mp1i y+logyy10
99 95 98 eqbrtrrid y+logyy0
100 fveq2 y=Alogy=logA
101 id y=Ay=A
102 100 101 oveq12d y=Alogyy=logAA
103 3 4 5 7 15 16 20 23 25 78 81 92 1 99 102 dvfsumrlim3 F:+FdomFLA+eAFALlogAA
104 103 mptru F:+FdomFLA+eAFALlogAA