| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logdivsum.1 |
|
| 2 |
|
ioorp |
|
| 3 |
2
|
eqcomi |
|
| 4 |
|
nnuz |
|
| 5 |
|
1zzd |
|
| 6 |
|
ere |
|
| 7 |
6
|
a1i |
|
| 8 |
|
0re |
|
| 9 |
|
epos |
|
| 10 |
8 6 9
|
ltleii |
|
| 11 |
10
|
a1i |
|
| 12 |
|
1re |
|
| 13 |
|
addge02 |
|
| 14 |
12 6 13
|
mp2an |
|
| 15 |
11 14
|
sylib |
|
| 16 |
8
|
a1i |
|
| 17 |
|
relogcl |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
resqcld |
|
| 20 |
19
|
rehalfcld |
|
| 21 |
|
rerpdivcl |
|
| 22 |
17 21
|
mpancom |
|
| 23 |
22
|
adantl |
|
| 24 |
|
nnrp |
|
| 25 |
24 23
|
sylan2 |
|
| 26 |
|
reelprrecn |
|
| 27 |
26
|
a1i |
|
| 28 |
|
cnelprrecn |
|
| 29 |
28
|
a1i |
|
| 30 |
18
|
recnd |
|
| 31 |
|
ovexd |
|
| 32 |
|
sqcl |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
halfcld |
|
| 35 |
|
simpr |
|
| 36 |
|
relogf1o |
|
| 37 |
|
f1of |
|
| 38 |
36 37
|
mp1i |
|
| 39 |
38
|
feqmptd |
|
| 40 |
|
fvres |
|
| 41 |
40
|
mpteq2ia |
|
| 42 |
39 41
|
eqtrdi |
|
| 43 |
42
|
oveq2d |
|
| 44 |
|
dvrelog |
|
| 45 |
43 44
|
eqtr3di |
|
| 46 |
|
ovexd |
|
| 47 |
|
2nn |
|
| 48 |
|
dvexp |
|
| 49 |
47 48
|
mp1i |
|
| 50 |
|
2m1e1 |
|
| 51 |
50
|
oveq2i |
|
| 52 |
|
exp1 |
|
| 53 |
52
|
adantl |
|
| 54 |
51 53
|
eqtrid |
|
| 55 |
54
|
oveq2d |
|
| 56 |
55
|
mpteq2dva |
|
| 57 |
49 56
|
eqtrd |
|
| 58 |
|
2cnd |
|
| 59 |
|
2ne0 |
|
| 60 |
59
|
a1i |
|
| 61 |
29 33 46 57 58 60
|
dvmptdivc |
|
| 62 |
|
2cn |
|
| 63 |
|
divcan3 |
|
| 64 |
62 59 63
|
mp3an23 |
|
| 65 |
64
|
adantl |
|
| 66 |
65
|
mpteq2dva |
|
| 67 |
61 66
|
eqtrd |
|
| 68 |
|
oveq1 |
|
| 69 |
68
|
oveq1d |
|
| 70 |
|
id |
|
| 71 |
27 29 30 31 34 35 45 67 69 70
|
dvmptco |
|
| 72 |
|
rpcn |
|
| 73 |
72
|
adantl |
|
| 74 |
|
rpne0 |
|
| 75 |
74
|
adantl |
|
| 76 |
30 73 75
|
divrecd |
|
| 77 |
76
|
mpteq2dva |
|
| 78 |
71 77
|
eqtr4d |
|
| 79 |
|
fveq2 |
|
| 80 |
|
id |
|
| 81 |
79 80
|
oveq12d |
|
| 82 |
|
simp3r |
|
| 83 |
|
simp2l |
|
| 84 |
83
|
rpred |
|
| 85 |
|
simp3l |
|
| 86 |
|
simp2r |
|
| 87 |
86
|
rpred |
|
| 88 |
6
|
a1i |
|
| 89 |
88 84 87 85 82
|
letrd |
|
| 90 |
|
logdivle |
|
| 91 |
84 85 87 89 90
|
syl22anc |
|
| 92 |
82 91
|
mpbid |
|
| 93 |
72
|
cxp1d |
|
| 94 |
93
|
oveq2d |
|
| 95 |
94
|
mpteq2ia |
|
| 96 |
|
1rp |
|
| 97 |
|
cxploglim |
|
| 98 |
96 97
|
mp1i |
|
| 99 |
95 98
|
eqbrtrrid |
|
| 100 |
|
fveq2 |
|
| 101 |
|
id |
|
| 102 |
100 101
|
oveq12d |
|
| 103 |
3 4 5 7 15 16 20 23 25 78 81 92 1 99 102
|
dvfsumrlim3 |
|
| 104 |
103
|
mptru |
|