Metamath Proof Explorer


Theorem lspsneq

Description: Equal spans of singletons must have proportional vectors. See lspsnss2 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015)

Ref Expression
Hypotheses lspsneq.v V=BaseW
lspsneq.s S=ScalarW
lspsneq.k K=BaseS
lspsneq.o 0˙=0S
lspsneq.t ·˙=W
lspsneq.n N=LSpanW
lspsneq.w φWLVec
lspsneq.x φXV
lspsneq.y φYV
Assertion lspsneq φNX=NYkK0˙X=k·˙Y

Proof

Step Hyp Ref Expression
1 lspsneq.v V=BaseW
2 lspsneq.s S=ScalarW
3 lspsneq.k K=BaseS
4 lspsneq.o 0˙=0S
5 lspsneq.t ·˙=W
6 lspsneq.n N=LSpanW
7 lspsneq.w φWLVec
8 lspsneq.x φXV
9 lspsneq.y φYV
10 lveclmod WLVecWLMod
11 7 10 syl φWLMod
12 2 lmodring WLModSRing
13 eqid 1S=1S
14 3 13 ringidcl SRing1SK
15 11 12 14 3syl φ1SK
16 2 lvecdrng WLVecSDivRing
17 4 13 drngunz SDivRing1S0˙
18 7 16 17 3syl φ1S0˙
19 eldifsn 1SK0˙1SK1S0˙
20 15 18 19 sylanbrc φ1SK0˙
21 20 ad2antrr φNX=NYY=0W1SK0˙
22 eqid 0W=0W
23 1 22 lmod0vcl WLMod0WV
24 1 2 5 13 lmodvs1 WLMod0WV1S·˙0W=0W
25 11 23 24 syl2anc2 φ1S·˙0W=0W
26 25 ad2antrr φNX=NYY=0W1S·˙0W=0W
27 oveq2 Y=0W1S·˙Y=1S·˙0W
28 27 adantl φNX=NYY=0W1S·˙Y=1S·˙0W
29 11 adantr φNX=NYWLMod
30 8 adantr φNX=NYXV
31 9 adantr φNX=NYYV
32 simpr φNX=NYNX=NY
33 1 22 6 29 30 31 32 lspsneq0b φNX=NYX=0WY=0W
34 33 biimpar φNX=NYY=0WX=0W
35 26 28 34 3eqtr4rd φNX=NYY=0WX=1S·˙Y
36 oveq1 j=1Sj·˙Y=1S·˙Y
37 36 rspceeqv 1SK0˙X=1S·˙YjK0˙X=j·˙Y
38 21 35 37 syl2anc φNX=NYY=0WjK0˙X=j·˙Y
39 eqimss NX=NYNXNY
40 39 adantl φNX=NYNXNY
41 eqid LSubSpW=LSubSpW
42 1 41 6 lspsncl WLModYVNYLSubSpW
43 11 9 42 syl2anc φNYLSubSpW
44 43 adantr φNX=NYNYLSubSpW
45 1 41 6 29 44 30 lspsnel5 φNX=NYXNYNXNY
46 40 45 mpbird φNX=NYXNY
47 2 3 1 5 6 lspsnel WLModYVXNYjKX=j·˙Y
48 29 31 47 syl2anc φNX=NYXNYjKX=j·˙Y
49 46 48 mpbid φNX=NYjKX=j·˙Y
50 49 adantr φNX=NYY0WjKX=j·˙Y
51 simprl φNX=NYY0WjKX=j·˙YjK
52 simpr jKX=j·˙YX=j·˙Y
53 52 adantl φNX=NYY0WjKX=j·˙YX=j·˙Y
54 33 biimpd φNX=NYX=0WY=0W
55 54 necon3d φNX=NYY0WX0W
56 55 imp φNX=NYY0WX0W
57 56 adantr φNX=NYY0WjKX=j·˙YX0W
58 53 57 eqnetrrd φNX=NYY0WjKX=j·˙Yj·˙Y0W
59 7 adantr φNX=NYWLVec
60 59 ad2antrr φNX=NYY0WjKX=j·˙YWLVec
61 31 ad2antrr φNX=NYY0WjKX=j·˙YYV
62 1 5 2 3 4 22 60 51 61 lvecvsn0 φNX=NYY0WjKX=j·˙Yj·˙Y0Wj0˙Y0W
63 58 62 mpbid φNX=NYY0WjKX=j·˙Yj0˙Y0W
64 63 simpld φNX=NYY0WjKX=j·˙Yj0˙
65 eldifsn jK0˙jKj0˙
66 51 64 65 sylanbrc φNX=NYY0WjKX=j·˙YjK0˙
67 50 66 53 reximssdv φNX=NYY0WjK0˙X=j·˙Y
68 38 67 pm2.61dane φNX=NYjK0˙X=j·˙Y
69 68 ex φNX=NYjK0˙X=j·˙Y
70 7 adantr φjK0˙WLVec
71 eldifi jK0˙jK
72 71 adantl φjK0˙jK
73 eldifsni jK0˙j0˙
74 73 adantl φjK0˙j0˙
75 9 adantr φjK0˙YV
76 1 2 5 3 4 6 lspsnvs WLVecjKj0˙YVNj·˙Y=NY
77 70 72 74 75 76 syl121anc φjK0˙Nj·˙Y=NY
78 77 ex φjK0˙Nj·˙Y=NY
79 sneq X=j·˙YX=j·˙Y
80 79 fveqeq2d X=j·˙YNX=NYNj·˙Y=NY
81 80 biimprcd Nj·˙Y=NYX=j·˙YNX=NY
82 78 81 syl6 φjK0˙X=j·˙YNX=NY
83 82 rexlimdv φjK0˙X=j·˙YNX=NY
84 69 83 impbid φNX=NYjK0˙X=j·˙Y
85 oveq1 j=kj·˙Y=k·˙Y
86 85 eqeq2d j=kX=j·˙YX=k·˙Y
87 86 cbvrexvw jK0˙X=j·˙YkK0˙X=k·˙Y
88 84 87 bitrdi φNX=NYkK0˙X=k·˙Y