Metamath Proof Explorer


Theorem madjusmdetlem3

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 27-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B=BaseA
madjusmdet.a A=1NMatR
madjusmdet.d D=1NmaDetR
madjusmdet.k K=1NmaAdjuR
madjusmdet.t ·˙=R
madjusmdet.z Z=ℤRHomR
madjusmdet.e E=1N1maDetR
madjusmdet.n φN
madjusmdet.r φRCRing
madjusmdet.i φI1N
madjusmdet.j φJ1N
madjusmdet.m φMB
madjusmdetlem2.p P=i1Nifi=1IifiIi1i
madjusmdetlem2.s S=i1Nifi=1NifiNi1i
madjusmdetlem4.q Q=j1Nifj=1JifjJj1j
madjusmdetlem4.t T=j1Nifj=1NifjNj1j
madjusmdetlem3.w W=i1N,j1NPS-1iUQT-1j
madjusmdetlem3.u φUB
Assertion madjusmdetlem3 φIsubMat1UJ=NsubMat1WN

Proof

Step Hyp Ref Expression
1 madjusmdet.b B=BaseA
2 madjusmdet.a A=1NMatR
3 madjusmdet.d D=1NmaDetR
4 madjusmdet.k K=1NmaAdjuR
5 madjusmdet.t ·˙=R
6 madjusmdet.z Z=ℤRHomR
7 madjusmdet.e E=1N1maDetR
8 madjusmdet.n φN
9 madjusmdet.r φRCRing
10 madjusmdet.i φI1N
11 madjusmdet.j φJ1N
12 madjusmdet.m φMB
13 madjusmdetlem2.p P=i1Nifi=1IifiIi1i
14 madjusmdetlem2.s S=i1Nifi=1NifiNi1i
15 madjusmdetlem4.q Q=j1Nifj=1JifjJj1j
16 madjusmdetlem4.t T=j1Nifj=1NifjNj1j
17 madjusmdetlem3.w W=i1N,j1NPS-1iUQT-1j
18 madjusmdetlem3.u φUB
19 nnuz =1
20 8 19 eleqtrdi φN1
21 fzdif2 N11NN=1N1
22 20 21 syl φ1NN=1N1
23 difss 1NN1N
24 22 23 eqsstrrdi φ1N11N
25 24 adantr φi1N1j1N11N11N
26 simprl φi1N1j1N1i1N1
27 25 26 sseldd φi1N1j1N1i1N
28 simprr φi1N1j1N1j1N1
29 25 28 sseldd φi1N1j1N1j1N
30 ovexd φi1N1j1N1PS-1iUQT-1jV
31 17 ovmpt4g i1Nj1NPS-1iUQT-1jViWj=PS-1iUQT-1j
32 27 29 30 31 syl3anc φi1N1j1N1iWj=PS-1iUQT-1j
33 26 28 ovresd φi1N1j1N1iW1N1×1N1j=iWj
34 eqid IsubMat1UJ=IsubMat1UJ
35 8 adantr φi1N1j1N1N
36 10 adantr φi1N1j1N1I1N
37 11 adantr φi1N1j1N1J1N
38 eqid BaseR=BaseR
39 2 38 1 matbas2i UBUBaseR1N×1N
40 18 39 syl φUBaseR1N×1N
41 40 adantr φi1N1j1N1UBaseR1N×1N
42 fz1ssnn 1N
43 42 27 sselid φi1N1j1N1i
44 42 29 sselid φi1N1j1N1j
45 eqidd φi1N1j1N1ifi<Iii+1=ifi<Iii+1
46 eqidd φi1N1j1N1ifj<Jjj+1=ifj<Jjj+1
47 34 35 35 36 37 41 43 44 45 46 smatlem φi1N1j1N1iIsubMat1UJj=ifi<Iii+1Uifj<Jjj+1
48 1 2 3 4 5 6 7 8 9 10 10 12 13 14 madjusmdetlem2 φi1N1ifi<Iii+1=PS-1i
49 26 48 syldan φi1N1j1N1ifi<Iii+1=PS-1i
50 1 2 3 4 5 6 7 8 9 11 11 12 15 16 madjusmdetlem2 φj1N1ifj<Jjj+1=QT-1j
51 28 50 syldan φi1N1j1N1ifj<Jjj+1=QT-1j
52 49 51 oveq12d φi1N1j1N1ifi<Iii+1Uifj<Jjj+1=PS-1iUQT-1j
53 47 52 eqtrd φi1N1j1N1iIsubMat1UJj=PS-1iUQT-1j
54 32 33 53 3eqtr4rd φi1N1j1N1iIsubMat1UJj=iW1N1×1N1j
55 54 ralrimivva φi1N1j1N1iIsubMat1UJj=iW1N1×1N1j
56 eqid Base1N1MatR=Base1N1MatR
57 2 1 56 34 8 10 11 18 smatcl φIsubMat1UJBase1N1MatR
58 fzfid φ1NFin
59 eqid 1N=1N
60 eqid SymGrp1N=SymGrp1N
61 eqid BaseSymGrp1N=BaseSymGrp1N
62 59 13 60 61 fzto1st I1NPBaseSymGrp1N
63 10 62 syl φPBaseSymGrp1N
64 eluzfz2 N1N1N
65 20 64 syl φN1N
66 59 14 60 61 fzto1st N1NSBaseSymGrp1N
67 65 66 syl φSBaseSymGrp1N
68 eqid invgSymGrp1N=invgSymGrp1N
69 60 61 68 symginv SBaseSymGrp1NinvgSymGrp1NS=S-1
70 67 69 syl φinvgSymGrp1NS=S-1
71 60 symggrp 1NFinSymGrp1NGrp
72 58 71 syl φSymGrp1NGrp
73 61 68 grpinvcl SymGrp1NGrpSBaseSymGrp1NinvgSymGrp1NSBaseSymGrp1N
74 72 67 73 syl2anc φinvgSymGrp1NSBaseSymGrp1N
75 70 74 eqeltrrd φS-1BaseSymGrp1N
76 eqid +SymGrp1N=+SymGrp1N
77 60 61 76 symgov PBaseSymGrp1NS-1BaseSymGrp1NP+SymGrp1NS-1=PS-1
78 60 61 76 symgcl PBaseSymGrp1NS-1BaseSymGrp1NP+SymGrp1NS-1BaseSymGrp1N
79 77 78 eqeltrrd PBaseSymGrp1NS-1BaseSymGrp1NPS-1BaseSymGrp1N
80 63 75 79 syl2anc φPS-1BaseSymGrp1N
81 80 3ad2ant1 φi1Nj1NPS-1BaseSymGrp1N
82 simp2 φi1Nj1Ni1N
83 60 61 symgfv PS-1BaseSymGrp1Ni1NPS-1i1N
84 81 82 83 syl2anc φi1Nj1NPS-1i1N
85 59 15 60 61 fzto1st J1NQBaseSymGrp1N
86 11 85 syl φQBaseSymGrp1N
87 59 16 60 61 fzto1st N1NTBaseSymGrp1N
88 65 87 syl φTBaseSymGrp1N
89 60 61 68 symginv TBaseSymGrp1NinvgSymGrp1NT=T-1
90 88 89 syl φinvgSymGrp1NT=T-1
91 61 68 grpinvcl SymGrp1NGrpTBaseSymGrp1NinvgSymGrp1NTBaseSymGrp1N
92 72 88 91 syl2anc φinvgSymGrp1NTBaseSymGrp1N
93 90 92 eqeltrrd φT-1BaseSymGrp1N
94 60 61 76 symgov QBaseSymGrp1NT-1BaseSymGrp1NQ+SymGrp1NT-1=QT-1
95 60 61 76 symgcl QBaseSymGrp1NT-1BaseSymGrp1NQ+SymGrp1NT-1BaseSymGrp1N
96 94 95 eqeltrrd QBaseSymGrp1NT-1BaseSymGrp1NQT-1BaseSymGrp1N
97 86 93 96 syl2anc φQT-1BaseSymGrp1N
98 97 3ad2ant1 φi1Nj1NQT-1BaseSymGrp1N
99 simp3 φi1Nj1Nj1N
100 60 61 symgfv QT-1BaseSymGrp1Nj1NQT-1j1N
101 98 99 100 syl2anc φi1Nj1NQT-1j1N
102 18 3ad2ant1 φi1Nj1NUB
103 2 38 1 84 101 102 matecld φi1Nj1NPS-1iUQT-1jBaseR
104 2 38 1 58 9 103 matbas2d φi1N,j1NPS-1iUQT-1jB
105 17 104 eqeltrid φWB
106 2 1 submatres NWBNsubMat1WN=W1N1×1N1
107 8 105 106 syl2anc φNsubMat1WN=W1N1×1N1
108 eqid NsubMat1WN=NsubMat1WN
109 2 1 56 108 8 65 65 105 smatcl φNsubMat1WNBase1N1MatR
110 107 109 eqeltrrd φW1N1×1N1Base1N1MatR
111 eqid 1N1MatR=1N1MatR
112 111 56 eqmat IsubMat1UJBase1N1MatRW1N1×1N1Base1N1MatRIsubMat1UJ=W1N1×1N1i1N1j1N1iIsubMat1UJj=iW1N1×1N1j
113 57 110 112 syl2anc φIsubMat1UJ=W1N1×1N1i1N1j1N1iIsubMat1UJj=iW1N1×1N1j
114 55 113 mpbird φIsubMat1UJ=W1N1×1N1
115 114 107 eqtr4d φIsubMat1UJ=NsubMat1WN