Metamath Proof Explorer


Theorem nnolog2flm1

Description: The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion nnolog2flm1 N2N+12log2N=log2N1

Proof

Step Hyp Ref Expression
1 eluz2nn N2N
2 nnpw2blenfzo2 NN=2#b N 1 N2#b N1+1..^2#b N
3 1 2 syl N2N=2#b N 1 N2#b N1+1..^2#b N
4 1 adantl N=2#b N 1 N2 N
5 nneo NN2¬N+12
6 5 bicomd N¬N+12N2
7 4 6 syl N=2#b N 1 N2 ¬N+12N2
8 notnotb N2¬¬N2
9 7 8 bitrdi N=2#b N 1 N2 ¬N+12¬¬N2
10 9 con4bid N=2#b N 1 N2 N+12¬N2
11 simpl N=2#b N 1 N2 N=2#b N1
12 11 oveq1d N=2#b N 1 N2 N2=2#b N12
13 blennnelnn N#b N
14 13 nnnn0d N#b N 0
15 1 14 syl N2#b N 0
16 2m1e1 21=1
17 2cn 2
18 2ne0 20
19 1ne2 12
20 19 necomi 21
21 logbid1 22021log22=1
22 17 18 20 21 mp3an log22=1
23 eluzle N22N
24 2z 2
25 uzid 222
26 24 25 mp1i N222
27 2rp 2+
28 27 a1i N22+
29 1 nnrpd N2N+
30 logbleb 222+N+2Nlog22log2N
31 26 28 29 30 syl3anc N22Nlog22log2N
32 23 31 mpbid N2log22log2N
33 22 32 eqbrtrrid N21log2N
34 20 a1i N221
35 relogbcl 2+N+21log2N
36 28 29 34 35 syl3anc N2log2N
37 1zzd N21
38 flge log2N11log2N1log2N
39 36 37 38 syl2anc N21log2N1log2N
40 33 39 mpbid N21log2N
41 16 40 eqbrtrid N221log2N
42 2re 2
43 42 a1i N22
44 1red N21
45 36 flcld N2log2N
46 45 zred N2log2N
47 43 44 46 lesubaddd N221log2N2log2N+1
48 41 47 mpbid N22log2N+1
49 blennn N#b N = log2N+1
50 1 49 syl N2#b N = log2N+1
51 48 50 breqtrrd N22#b N
52 nn0ge2m1nn #b N 0 2#b N #b N1
53 15 51 52 syl2anc N2#b N 1
54 53 adantl N=2#b N 1 N2 #b N1
55 nnpw2even #b N 1 2#b N12
56 54 55 syl N=2#b N 1 N2 2#b N12
57 12 56 eqeltrd N=2#b N 1 N2 N2
58 57 pm2.24d N=2#b N 1 N2 ¬N2log2N=log2N1
59 10 58 sylbid N=2#b N 1 N2 N+12log2N=log2N1
60 59 ex N=2#b N 1 N2N+12log2N=log2N1
61 1 13 syl N2#b N
62 nnm1nn0 #b N #b N10
63 61 62 syl N2#b N 1 0
64 63 ad2antlr N2#b N 1 + 1 ..^ 2#b N N2 N+12 #b N10
65 1 ad2antlr N2#b N 1 + 1 ..^ 2#b N N2 N+12 N
66 nnpw2blenfzo NN2#b N 1 ..^ 2#b N
67 65 66 syl N2#b N 1 + 1 ..^ 2#b N N2 N+12 N2#b N1..^2#b N
68 61 nncnd N2#b N
69 68 ad2antlr N2#b N 1 + 1 ..^ 2#b N N2 N+12 #b N
70 npcan1 #b N #b N-1+1=#b N
71 69 70 syl N2#b N 1 + 1 ..^ 2#b N N2 N+12 #b N-1+1=#b N
72 71 oveq2d N2#b N 1 + 1 ..^ 2#b N N2 N+12 2#b N-1+1=2#b N
73 72 oveq2d N2#b N 1 + 1 ..^ 2#b N N2 N+12 2#b N1..^2#b N-1+1=2#b N1..^2#b N
74 67 73 eleqtrrd N2#b N 1 + 1 ..^ 2#b N N2 N+12 N2#b N1..^2#b N-1+1
75 fllog2 #b N 1 0 N2#b N1..^2#b N-1+1 log2N=#b N1
76 64 74 75 syl2anc N2#b N 1 + 1 ..^ 2#b N N2 N+12 log2N=#b N1
77 61 ad2antlr N2#b N 1 + 1 ..^ 2#b N N2 N+12 #b N
78 77 62 syl N2#b N 1 + 1 ..^ 2#b N N2 N+12 #b N10
79 elfzo2 N2#b N 1 + 1 ..^ 2#b N N2#b N1+12#b NN<2#b N
80 eluz2 N2#b N 1 + 1 2#b N1+1N2#b N1+1N
81 80 3anbi1i N2#b N 1 + 1 2#b N N<2#b N 2#b N1+1N2#b N1+1N2#b NN<2#b N
82 79 81 bitri N2#b N 1 + 1 ..^ 2#b N 2#b N1+1N2#b N1+1N2#b NN<2#b N
83 2nn 2
84 83 a1i N22
85 84 63 jca N22#b N 1 0
86 85 adantl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N10
87 nnexpcl 2#b N 1 0 2#b N1
88 86 87 syl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N1
89 88 nnzd 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N1
90 peano2zm NN1
91 90 3ad2ant2 2#b N 1 + 1 N 2#b N1+1N N1
92 91 adantr 2#b N 1 + 1 N 2#b N1+1N N<2#b N N1
93 92 adantr 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N1
94 84 63 nnexpcld N22#b N 1
95 94 nnred N22#b N 1
96 1 nnred N2N
97 leaddsub 2#b N 1 1 N 2#b N1+1N2#b N1N1
98 95 44 96 97 syl3anc N22#b N 1 + 1 N 2#b N1N1
99 98 biimpcd 2#b N 1 + 1 N N22#b N1N1
100 99 3ad2ant3 2#b N 1 + 1 N 2#b N1+1N N22#b N1N1
101 100 adantr 2#b N 1 + 1 N 2#b N1+1N N<2#b N N22#b N1N1
102 101 imp 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N1N1
103 eluz2 N12#b N 1 2#b N1N12#b N1N1
104 89 93 102 103 syl3anbrc 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N12#b N1
105 70 eleq1d #b N #b N-1+10#b N0
106 68 105 syl N2#b N - 1 + 1 0 #b N0
107 15 106 mpbird N2#b N - 1 + 1 0
108 84 107 jca N22#b N - 1 + 1 0
109 108 adantl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N-1+10
110 nnexpcl 2#b N - 1 + 1 0 2#b N-1+1
111 109 110 syl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N-1+1
112 111 nnzd 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N-1+1
113 ltle N2#b N N<2#b NN2#b N
114 nnre NN
115 42 a1i N2
116 115 14 reexpcld N2#b N
117 114 116 jca NN2#b N
118 1 117 syl N2N2#b N
119 113 118 syl11 N<2#b N N2N2#b N
120 119 adantl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2N2#b N
121 120 imp 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N2#b N
122 simpll2 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N
123 84 15 nnexpcld N22#b N
124 123 nnzd N22#b N
125 124 adantl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N
126 zlem1lt N2#b N N2#b NN1<2#b N
127 122 125 126 syl2anc 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N2#b NN1<2#b N
128 121 127 mpbid 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N1<2#b N
129 68 70 syl N2#b N - 1 + 1 = #b N
130 129 oveq2d N22#b N - 1 + 1 = 2#b N
131 130 adantl 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 2#b N-1+1=2#b N
132 128 131 breqtrrd 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N1<2#b N-1+1
133 104 112 132 3jca 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2 N12#b N12#b N-1+1N1<2#b N-1+1
134 133 ex 2#b N 1 + 1 N 2#b N1+1N N<2#b N N2N12#b N12#b N-1+1N1<2#b N-1+1
135 134 3adant2 2#b N 1 + 1 N 2#b N1+1N 2#b N N<2#b N N2N12#b N12#b N-1+1N1<2#b N-1+1
136 82 135 sylbi N2#b N 1 + 1 ..^ 2#b N N2N12#b N12#b N-1+1N1<2#b N-1+1
137 136 imp N2#b N 1 + 1 ..^ 2#b N N2 N12#b N12#b N-1+1N1<2#b N-1+1
138 elfzo2 N12#b N 1 ..^ 2#b N-1+1 N12#b N12#b N-1+1N1<2#b N-1+1
139 137 138 sylibr N2#b N 1 + 1 ..^ 2#b N N2 N12#b N1..^2#b N-1+1
140 139 adantr N2#b N 1 + 1 ..^ 2#b N N2 N+12 N12#b N1..^2#b N-1+1
141 fllog2 #b N 1 0 N12#b N1..^2#b N-1+1 log2N1=#b N1
142 78 140 141 syl2anc N2#b N 1 + 1 ..^ 2#b N N2 N+12 log2N1=#b N1
143 76 142 eqtr4d N2#b N 1 + 1 ..^ 2#b N N2 N+12 log2N=log2N1
144 143 exp31 N2#b N 1 + 1 ..^ 2#b N N2N+12log2N=log2N1
145 60 144 jaoi N=2#b N 1 N2#b N1+1..^2#b N N2N+12log2N=log2N1
146 3 145 mpcom N2N+12log2N=log2N1
147 146 imp N2N+12log2N=log2N1