Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nsgqusf1o.b | |
|
nsgqusf1o.s | |
||
nsgqusf1o.t | |
||
nsgqusf1o.1 | |
||
nsgqusf1o.2 | No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |- | ||
nsgqusf1o.q | |
||
nsgqusf1o.p | |
||
nsgqusf1o.e | |
||
nsgqusf1o.f | |
||
nsgqusf1o.n | |
||
Assertion | nsgqusf1olem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgqusf1o.b | |
|
2 | nsgqusf1o.s | |
|
3 | nsgqusf1o.t | |
|
4 | nsgqusf1o.1 | |
|
5 | nsgqusf1o.2 | Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |- | |
6 | nsgqusf1o.q | |
|
7 | nsgqusf1o.p | |
|
8 | nsgqusf1o.e | |
|
9 | nsgqusf1o.f | |
|
10 | nsgqusf1o.n | |
|
11 | simpr | |
|
12 | 2 | reqabi | |
13 | 1 2 3 4 5 6 7 8 9 10 | nsgqusf1olem1 | |
14 | 13 | anasss | |
15 | 14 3 | eleqtrdi | |
16 | 12 15 | sylan2b | |
17 | 16 | adantr | |
18 | 11 17 | eqeltrd | |
19 | 18 | r19.29an | |
20 | sseq2 | |
|
21 | 10 | adantr | |
22 | simpr | |
|
23 | 1 6 7 21 22 | nsgmgclem | |
24 | 3 | eleq2i | |
25 | nsgsubg | |
|
26 | 10 25 | syl | |
27 | 1 | subgss | |
28 | 26 27 | syl | |
29 | 28 | adantr | |
30 | 26 | ad2antrr | |
31 | 7 | grplsmid | |
32 | 30 31 | sylancom | |
33 | 24 | biimpi | |
34 | 6 | nsgqus0 | |
35 | 10 33 34 | syl2an | |
36 | 35 | adantr | |
37 | 32 36 | eqeltrd | |
38 | 29 37 | ssrabdv | |
39 | 24 38 | sylan2br | |
40 | 20 23 39 | elrabd | |
41 | 40 2 | eleqtrrdi | |
42 | mpteq1 | |
|
43 | 42 | rneqd | |
44 | 43 | eqeq2d | |
45 | 44 | adantl | |
46 | eqid | |
|
47 | 46 | subgss | |
48 | 47 | adantl | |
49 | 48 | sselda | |
50 | 6 | a1i | |
51 | 1 | a1i | |
52 | ovexd | |
|
53 | subgrcl | |
|
54 | 26 53 | syl | |
55 | 54 | ad2antrr | |
56 | 50 51 52 55 | qusbas | |
57 | 49 56 | eleqtrrd | |
58 | elqsi | |
|
59 | 57 58 | syl | |
60 | sneq | |
|
61 | 60 | oveq1d | |
62 | 61 | eleq1d | |
63 | simplr | |
|
64 | simpr | |
|
65 | 26 | ad4antr | |
66 | 1 7 65 63 | quslsm | |
67 | 64 66 | eqtrd | |
68 | simpllr | |
|
69 | 67 68 | eqeltrrd | |
70 | 62 63 69 | elrabd | |
71 | 70 67 | jca | |
72 | 71 | expl | |
73 | 72 | reximdv2 | |
74 | 59 73 | mpd | |
75 | simplr | |
|
76 | 62 | elrab | |
77 | 75 76 | sylib | |
78 | simpllr | |
|
79 | simpr | |
|
80 | 78 79 | eqeltrd | |
81 | 80 | anasss | |
82 | 81 | adantllr | |
83 | 77 82 | mpdan | |
84 | 83 | r19.29an | |
85 | 74 84 | impbida | |
86 | eqid | |
|
87 | 86 | elrnmpt | |
88 | 87 | elv | |
89 | 85 88 | bitr4di | |
90 | 89 | eqrdv | |
91 | 41 45 90 | rspcedvd | |
92 | 19 91 | impbida | |
93 | 92 | abbidv | |
94 | 8 | rnmpt | |
95 | abid1 | |
|
96 | 93 94 95 | 3eqtr4g | |
97 | 96 3 | eqtr4di | |