Metamath Proof Explorer


Theorem nsgqusf1olem2

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B=BaseG
nsgqusf1o.s S=hSubGrpG|Nh
nsgqusf1o.t T=SubGrpQ
nsgqusf1o.1 ˙=toIncS
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q=G/𝑠G~QGN
nsgqusf1o.p ˙=LSSumG
nsgqusf1o.e E=hSranxhx˙N
nsgqusf1o.f F=fTaB|a˙Nf
nsgqusf1o.n φNNrmSGrpG
Assertion nsgqusf1olem2 φranE=T

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B=BaseG
2 nsgqusf1o.s S=hSubGrpG|Nh
3 nsgqusf1o.t T=SubGrpQ
4 nsgqusf1o.1 ˙=toIncS
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q=G/𝑠G~QGN
7 nsgqusf1o.p ˙=LSSumG
8 nsgqusf1o.e E=hSranxhx˙N
9 nsgqusf1o.f F=fTaB|a˙Nf
10 nsgqusf1o.n φNNrmSGrpG
11 simpr φhSf=ranxhx˙Nf=ranxhx˙N
12 2 reqabi hShSubGrpGNh
13 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem1 φhSubGrpGNhranxhx˙NT
14 13 anasss φhSubGrpGNhranxhx˙NT
15 14 3 eleqtrdi φhSubGrpGNhranxhx˙NSubGrpQ
16 12 15 sylan2b φhSranxhx˙NSubGrpQ
17 16 adantr φhSf=ranxhx˙Nranxhx˙NSubGrpQ
18 11 17 eqeltrd φhSf=ranxhx˙NfSubGrpQ
19 18 r19.29an φhSf=ranxhx˙NfSubGrpQ
20 sseq2 h=aB|a˙NfNhNaB|a˙Nf
21 10 adantr φfSubGrpQNNrmSGrpG
22 simpr φfSubGrpQfSubGrpQ
23 1 6 7 21 22 nsgmgclem φfSubGrpQaB|a˙NfSubGrpG
24 3 eleq2i fTfSubGrpQ
25 nsgsubg NNrmSGrpGNSubGrpG
26 10 25 syl φNSubGrpG
27 1 subgss NSubGrpGNB
28 26 27 syl φNB
29 28 adantr φfTNB
30 26 ad2antrr φfTaNNSubGrpG
31 7 grplsmid NSubGrpGaNa˙N=N
32 30 31 sylancom φfTaNa˙N=N
33 24 biimpi fTfSubGrpQ
34 6 nsgqus0 NNrmSGrpGfSubGrpQNf
35 10 33 34 syl2an φfTNf
36 35 adantr φfTaNNf
37 32 36 eqeltrd φfTaNa˙Nf
38 29 37 ssrabdv φfTNaB|a˙Nf
39 24 38 sylan2br φfSubGrpQNaB|a˙Nf
40 20 23 39 elrabd φfSubGrpQaB|a˙NfhSubGrpG|Nh
41 40 2 eleqtrrdi φfSubGrpQaB|a˙NfS
42 mpteq1 h=aB|a˙Nfxhx˙N=xaB|a˙Nfx˙N
43 42 rneqd h=aB|a˙Nfranxhx˙N=ranxaB|a˙Nfx˙N
44 43 eqeq2d h=aB|a˙Nff=ranxhx˙Nf=ranxaB|a˙Nfx˙N
45 44 adantl φfSubGrpQh=aB|a˙Nff=ranxhx˙Nf=ranxaB|a˙Nfx˙N
46 eqid BaseQ=BaseQ
47 46 subgss fSubGrpQfBaseQ
48 47 adantl φfSubGrpQfBaseQ
49 48 sselda φfSubGrpQifiBaseQ
50 6 a1i φfSubGrpQifQ=G/𝑠G~QGN
51 1 a1i φfSubGrpQifB=BaseG
52 ovexd φfSubGrpQifG~QGNV
53 subgrcl NSubGrpGGGrp
54 26 53 syl φGGrp
55 54 ad2antrr φfSubGrpQifGGrp
56 50 51 52 55 qusbas φfSubGrpQifB/G~QGN=BaseQ
57 49 56 eleqtrrd φfSubGrpQifiB/G~QGN
58 elqsi iB/G~QGNxBi=xG~QGN
59 57 58 syl φfSubGrpQifxBi=xG~QGN
60 sneq a=xa=x
61 60 oveq1d a=xa˙N=x˙N
62 61 eleq1d a=xa˙Nfx˙Nf
63 simplr φfSubGrpQifxBi=xG~QGNxB
64 simpr φfSubGrpQifxBi=xG~QGNi=xG~QGN
65 26 ad4antr φfSubGrpQifxBi=xG~QGNNSubGrpG
66 1 7 65 63 quslsm φfSubGrpQifxBi=xG~QGNxG~QGN=x˙N
67 64 66 eqtrd φfSubGrpQifxBi=xG~QGNi=x˙N
68 simpllr φfSubGrpQifxBi=xG~QGNif
69 67 68 eqeltrrd φfSubGrpQifxBi=xG~QGNx˙Nf
70 62 63 69 elrabd φfSubGrpQifxBi=xG~QGNxaB|a˙Nf
71 70 67 jca φfSubGrpQifxBi=xG~QGNxaB|a˙Nfi=x˙N
72 71 expl φfSubGrpQifxBi=xG~QGNxaB|a˙Nfi=x˙N
73 72 reximdv2 φfSubGrpQifxBi=xG~QGNxaB|a˙Nfi=x˙N
74 59 73 mpd φfSubGrpQifxaB|a˙Nfi=x˙N
75 simplr φfSubGrpQxaB|a˙Nfi=x˙NxaB|a˙Nf
76 62 elrab xaB|a˙NfxBx˙Nf
77 75 76 sylib φfSubGrpQxaB|a˙Nfi=x˙NxBx˙Nf
78 simpllr φfSubGrpQi=x˙NxBx˙Nfi=x˙N
79 simpr φfSubGrpQi=x˙NxBx˙Nfx˙Nf
80 78 79 eqeltrd φfSubGrpQi=x˙NxBx˙Nfif
81 80 anasss φfSubGrpQi=x˙NxBx˙Nfif
82 81 adantllr φfSubGrpQxaB|a˙Nfi=x˙NxBx˙Nfif
83 77 82 mpdan φfSubGrpQxaB|a˙Nfi=x˙Nif
84 83 r19.29an φfSubGrpQxaB|a˙Nfi=x˙Nif
85 74 84 impbida φfSubGrpQifxaB|a˙Nfi=x˙N
86 eqid xaB|a˙Nfx˙N=xaB|a˙Nfx˙N
87 86 elrnmpt iViranxaB|a˙Nfx˙NxaB|a˙Nfi=x˙N
88 87 elv iranxaB|a˙Nfx˙NxaB|a˙Nfi=x˙N
89 85 88 bitr4di φfSubGrpQifiranxaB|a˙Nfx˙N
90 89 eqrdv φfSubGrpQf=ranxaB|a˙Nfx˙N
91 41 45 90 rspcedvd φfSubGrpQhSf=ranxhx˙N
92 19 91 impbida φhSf=ranxhx˙NfSubGrpQ
93 92 abbidv φf|hSf=ranxhx˙N=f|fSubGrpQ
94 8 rnmpt ranE=f|hSf=ranxhx˙N
95 abid1 SubGrpQ=f|fSubGrpQ
96 93 94 95 3eqtr4g φranE=SubGrpQ
97 96 3 eqtr4di φranE=T