Metamath Proof Explorer


Theorem nsgqusf1olem3

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B=BaseG
nsgqusf1o.s S=hSubGrpG|Nh
nsgqusf1o.t T=SubGrpQ
nsgqusf1o.1 ˙=toIncS
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q=G/𝑠G~QGN
nsgqusf1o.p ˙=LSSumG
nsgqusf1o.e E=hSranxhx˙N
nsgqusf1o.f F=fTaB|a˙Nf
nsgqusf1o.n φNNrmSGrpG
Assertion nsgqusf1olem3 φranF=S

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B=BaseG
2 nsgqusf1o.s S=hSubGrpG|Nh
3 nsgqusf1o.t T=SubGrpQ
4 nsgqusf1o.1 ˙=toIncS
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q=G/𝑠G~QGN
7 nsgqusf1o.p ˙=LSSumG
8 nsgqusf1o.e E=hSranxhx˙N
9 nsgqusf1o.f F=fTaB|a˙Nf
10 nsgqusf1o.n φNNrmSGrpG
11 9 elrnmpt hVhranFfTh=aB|a˙Nf
12 11 elv hranFfTh=aB|a˙Nf
13 2 reqabi hShSubGrpGNh
14 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem1 φhSubGrpGNhranxhx˙NT
15 eleq2 f=ranxhx˙Na˙Nfa˙Nranxhx˙N
16 15 rabbidv f=ranxhx˙NaB|a˙Nf=aB|a˙Nranxhx˙N
17 16 eqeq2d f=ranxhx˙Nh=aB|a˙Nfh=aB|a˙Nranxhx˙N
18 17 adantl φhSubGrpGNhf=ranxhx˙Nh=aB|a˙Nfh=aB|a˙Nranxhx˙N
19 nfv xφhSubGrpGNhaB
20 nfmpt1 _xxhx˙N
21 20 nfrn _xranxhx˙N
22 21 nfel2 xa˙Nranxhx˙N
23 19 22 nfan xφhSubGrpGNhaBa˙Nranxhx˙N
24 nsgsubg NNrmSGrpGNSubGrpG
25 10 24 syl φNSubGrpG
26 subgrcl NSubGrpGGGrp
27 25 26 syl φGGrp
28 27 ad4antr φhSubGrpGNhaBxhGGrp
29 28 adantr φhSubGrpGNhaBxha˙N=x˙NGGrp
30 1 subgss hSubGrpGhB
31 30 ad3antlr φhSubGrpGNhaBhB
32 31 sselda φhSubGrpGNhaBxhxB
33 32 adantr φhSubGrpGNhaBxha˙N=x˙NxB
34 simplr φhSubGrpGNhaBxhaB
35 34 adantr φhSubGrpGNhaBxha˙N=x˙NaB
36 eqid +G=+G
37 eqid invgG=invgG
38 1 36 37 grpasscan1 GGrpxBaBx+GinvgGx+Ga=a
39 29 33 35 38 syl3anc φhSubGrpGNhaBxha˙N=x˙Nx+GinvgGx+Ga=a
40 simp-5r φhSubGrpGNhaBxha˙N=x˙NhSubGrpG
41 simplr φhSubGrpGNhaBxha˙N=x˙Nxh
42 simp-4r φhSubGrpGNhaBxha˙N=x˙NNh
43 1 subgss NSubGrpGNB
44 25 43 syl φNB
45 44 ad5antr φhSubGrpGNhaBxha˙N=x˙NNB
46 eqid G~QGN=G~QGN
47 1 46 eqger NSubGrpGG~QGNErB
48 25 47 syl φG~QGNErB
49 48 ad4antr φhSubGrpGNhaBxhG~QGNErB
50 49 adantr φhSubGrpGNhaBxha˙N=x˙NG~QGNErB
51 49 34 erth φhSubGrpGNhaBxhaG~QGNxaG~QGN=xG~QGN
52 25 ad4antr φhSubGrpGNhaBxhNSubGrpG
53 1 7 52 34 quslsm φhSubGrpGNhaBxhaG~QGN=a˙N
54 1 7 52 32 quslsm φhSubGrpGNhaBxhxG~QGN=x˙N
55 53 54 eqeq12d φhSubGrpGNhaBxhaG~QGN=xG~QGNa˙N=x˙N
56 51 55 bitrd φhSubGrpGNhaBxhaG~QGNxa˙N=x˙N
57 56 biimpar φhSubGrpGNhaBxha˙N=x˙NaG~QGNx
58 50 57 ersym φhSubGrpGNhaBxha˙N=x˙NxG~QGNa
59 1 37 36 46 eqgval GGrpNBxG~QGNaxBaBinvgGx+GaN
60 59 biimpa GGrpNBxG~QGNaxBaBinvgGx+GaN
61 60 simp3d GGrpNBxG~QGNainvgGx+GaN
62 29 45 58 61 syl21anc φhSubGrpGNhaBxha˙N=x˙NinvgGx+GaN
63 42 62 sseldd φhSubGrpGNhaBxha˙N=x˙NinvgGx+Gah
64 36 subgcl hSubGrpGxhinvgGx+Gahx+GinvgGx+Gah
65 40 41 63 64 syl3anc φhSubGrpGNhaBxha˙N=x˙Nx+GinvgGx+Gah
66 39 65 eqeltrrd φhSubGrpGNhaBxha˙N=x˙Nah
67 66 adantllr φhSubGrpGNhaBa˙Nranxhx˙Nxha˙N=x˙Nah
68 eqid xhx˙N=xhx˙N
69 ovex x˙NV
70 68 69 elrnmpti a˙Nranxhx˙Nxha˙N=x˙N
71 70 biimpi a˙Nranxhx˙Nxha˙N=x˙N
72 71 adantl φhSubGrpGNhaBa˙Nranxhx˙Nxha˙N=x˙N
73 23 67 72 r19.29af φhSubGrpGNhaBa˙Nranxhx˙Nah
74 simpr φhSubGrpGNhaBahah
75 ovexd φhSubGrpGNhaBaha˙NV
76 sneq x=ax=a
77 76 oveq1d x=ax˙N=a˙N
78 77 eqcomd x=aa˙N=x˙N
79 78 adantl φhSubGrpGNhaBahx=aa˙N=x˙N
80 68 74 75 79 elrnmptdv φhSubGrpGNhaBaha˙Nranxhx˙N
81 73 80 impbida φhSubGrpGNhaBa˙Nranxhx˙Nah
82 81 rabbidva φhSubGrpGNhaB|a˙Nranxhx˙N=aB|ah
83 30 adantl φhSubGrpGhB
84 dfss7 hBaB|ah=h
85 83 84 sylib φhSubGrpGaB|ah=h
86 85 adantr φhSubGrpGNhaB|ah=h
87 82 86 eqtr2d φhSubGrpGNhh=aB|a˙Nranxhx˙N
88 14 18 87 rspcedvd φhSubGrpGNhfTh=aB|a˙Nf
89 88 anasss φhSubGrpGNhfTh=aB|a˙Nf
90 10 adantr φfTNNrmSGrpG
91 3 eleq2i fTfSubGrpQ
92 91 biimpi fTfSubGrpQ
93 92 adantl φfTfSubGrpQ
94 1 6 7 90 93 nsgmgclem φfTaB|a˙NfSubGrpG
95 94 adantr φfTh=aB|a˙NfaB|a˙NfSubGrpG
96 eleq1 h=aB|a˙NfhSubGrpGaB|a˙NfSubGrpG
97 96 adantl φfTh=aB|a˙NfhSubGrpGaB|a˙NfSubGrpG
98 95 97 mpbird φfTh=aB|a˙NfhSubGrpG
99 44 adantr φfTNB
100 25 ad2antrr φfTaNNSubGrpG
101 simpr φfTaNaN
102 7 grplsmid NSubGrpGaNa˙N=N
103 100 101 102 syl2anc φfTaNa˙N=N
104 6 nsgqus0 NNrmSGrpGfSubGrpQNf
105 90 93 104 syl2anc φfTNf
106 105 adantr φfTaNNf
107 103 106 eqeltrd φfTaNa˙Nf
108 99 107 ssrabdv φfTNaB|a˙Nf
109 108 adantr φfTh=aB|a˙NfNaB|a˙Nf
110 simpr φfTh=aB|a˙Nfh=aB|a˙Nf
111 109 110 sseqtrrd φfTh=aB|a˙NfNh
112 98 111 jca φfTh=aB|a˙NfhSubGrpGNh
113 112 r19.29an φfTh=aB|a˙NfhSubGrpGNh
114 89 113 impbida φhSubGrpGNhfTh=aB|a˙Nf
115 13 114 bitrid φhSfTh=aB|a˙Nf
116 12 115 bitr4id φhranFhS
117 116 eqrdv φranF=S