Metamath Proof Explorer


Theorem nsgqusf1olem3

Description: Lemma for nsgqusf1o . (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B = Base G
nsgqusf1o.s S = h SubGrp G | N h
nsgqusf1o.t T = SubGrp Q
nsgqusf1o.1 ˙ = toInc S
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q = G / 𝑠 G ~ QG N
nsgqusf1o.p ˙ = LSSum G
nsgqusf1o.e E = h S ran x h x ˙ N
nsgqusf1o.f F = f T a B | a ˙ N f
nsgqusf1o.n φ N NrmSGrp G
Assertion nsgqusf1olem3 φ ran F = S

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B = Base G
2 nsgqusf1o.s S = h SubGrp G | N h
3 nsgqusf1o.t T = SubGrp Q
4 nsgqusf1o.1 ˙ = toInc S
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q = G / 𝑠 G ~ QG N
7 nsgqusf1o.p ˙ = LSSum G
8 nsgqusf1o.e E = h S ran x h x ˙ N
9 nsgqusf1o.f F = f T a B | a ˙ N f
10 nsgqusf1o.n φ N NrmSGrp G
11 9 elrnmpt h V h ran F f T h = a B | a ˙ N f
12 11 elv h ran F f T h = a B | a ˙ N f
13 2 rabeq2i h S h SubGrp G N h
14 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem1 φ h SubGrp G N h ran x h x ˙ N T
15 eleq2 f = ran x h x ˙ N a ˙ N f a ˙ N ran x h x ˙ N
16 15 rabbidv f = ran x h x ˙ N a B | a ˙ N f = a B | a ˙ N ran x h x ˙ N
17 16 eqeq2d f = ran x h x ˙ N h = a B | a ˙ N f h = a B | a ˙ N ran x h x ˙ N
18 17 adantl φ h SubGrp G N h f = ran x h x ˙ N h = a B | a ˙ N f h = a B | a ˙ N ran x h x ˙ N
19 nfv x φ h SubGrp G N h a B
20 nfmpt1 _ x x h x ˙ N
21 20 nfrn _ x ran x h x ˙ N
22 21 nfel2 x a ˙ N ran x h x ˙ N
23 19 22 nfan x φ h SubGrp G N h a B a ˙ N ran x h x ˙ N
24 nsgsubg N NrmSGrp G N SubGrp G
25 10 24 syl φ N SubGrp G
26 subgrcl N SubGrp G G Grp
27 25 26 syl φ G Grp
28 27 ad4antr φ h SubGrp G N h a B x h G Grp
29 28 adantr φ h SubGrp G N h a B x h a ˙ N = x ˙ N G Grp
30 1 subgss h SubGrp G h B
31 30 ad3antlr φ h SubGrp G N h a B h B
32 31 sselda φ h SubGrp G N h a B x h x B
33 32 adantr φ h SubGrp G N h a B x h a ˙ N = x ˙ N x B
34 simplr φ h SubGrp G N h a B x h a B
35 34 adantr φ h SubGrp G N h a B x h a ˙ N = x ˙ N a B
36 eqid + G = + G
37 eqid inv g G = inv g G
38 1 36 37 grpasscan1 G Grp x B a B x + G inv g G x + G a = a
39 29 33 35 38 syl3anc φ h SubGrp G N h a B x h a ˙ N = x ˙ N x + G inv g G x + G a = a
40 simp-5r φ h SubGrp G N h a B x h a ˙ N = x ˙ N h SubGrp G
41 simplr φ h SubGrp G N h a B x h a ˙ N = x ˙ N x h
42 simp-4r φ h SubGrp G N h a B x h a ˙ N = x ˙ N N h
43 1 subgss N SubGrp G N B
44 25 43 syl φ N B
45 44 ad5antr φ h SubGrp G N h a B x h a ˙ N = x ˙ N N B
46 eqid G ~ QG N = G ~ QG N
47 1 46 eqger N SubGrp G G ~ QG N Er B
48 25 47 syl φ G ~ QG N Er B
49 48 ad4antr φ h SubGrp G N h a B x h G ~ QG N Er B
50 49 adantr φ h SubGrp G N h a B x h a ˙ N = x ˙ N G ~ QG N Er B
51 49 34 erth φ h SubGrp G N h a B x h a G ~ QG N x a G ~ QG N = x G ~ QG N
52 25 ad4antr φ h SubGrp G N h a B x h N SubGrp G
53 1 7 52 34 quslsm φ h SubGrp G N h a B x h a G ~ QG N = a ˙ N
54 1 7 52 32 quslsm φ h SubGrp G N h a B x h x G ~ QG N = x ˙ N
55 53 54 eqeq12d φ h SubGrp G N h a B x h a G ~ QG N = x G ~ QG N a ˙ N = x ˙ N
56 51 55 bitrd φ h SubGrp G N h a B x h a G ~ QG N x a ˙ N = x ˙ N
57 56 biimpar φ h SubGrp G N h a B x h a ˙ N = x ˙ N a G ~ QG N x
58 50 57 ersym φ h SubGrp G N h a B x h a ˙ N = x ˙ N x G ~ QG N a
59 1 37 36 46 eqgval G Grp N B x G ~ QG N a x B a B inv g G x + G a N
60 59 biimpa G Grp N B x G ~ QG N a x B a B inv g G x + G a N
61 60 simp3d G Grp N B x G ~ QG N a inv g G x + G a N
62 29 45 58 61 syl21anc φ h SubGrp G N h a B x h a ˙ N = x ˙ N inv g G x + G a N
63 42 62 sseldd φ h SubGrp G N h a B x h a ˙ N = x ˙ N inv g G x + G a h
64 36 subgcl h SubGrp G x h inv g G x + G a h x + G inv g G x + G a h
65 40 41 63 64 syl3anc φ h SubGrp G N h a B x h a ˙ N = x ˙ N x + G inv g G x + G a h
66 39 65 eqeltrrd φ h SubGrp G N h a B x h a ˙ N = x ˙ N a h
67 66 adantllr φ h SubGrp G N h a B a ˙ N ran x h x ˙ N x h a ˙ N = x ˙ N a h
68 eqid x h x ˙ N = x h x ˙ N
69 ovex x ˙ N V
70 68 69 elrnmpti a ˙ N ran x h x ˙ N x h a ˙ N = x ˙ N
71 70 biimpi a ˙ N ran x h x ˙ N x h a ˙ N = x ˙ N
72 71 adantl φ h SubGrp G N h a B a ˙ N ran x h x ˙ N x h a ˙ N = x ˙ N
73 23 67 72 r19.29af φ h SubGrp G N h a B a ˙ N ran x h x ˙ N a h
74 simpr φ h SubGrp G N h a B a h a h
75 ovexd φ h SubGrp G N h a B a h a ˙ N V
76 sneq x = a x = a
77 76 oveq1d x = a x ˙ N = a ˙ N
78 77 eqcomd x = a a ˙ N = x ˙ N
79 78 adantl φ h SubGrp G N h a B a h x = a a ˙ N = x ˙ N
80 68 74 75 79 elrnmptdv φ h SubGrp G N h a B a h a ˙ N ran x h x ˙ N
81 73 80 impbida φ h SubGrp G N h a B a ˙ N ran x h x ˙ N a h
82 81 rabbidva φ h SubGrp G N h a B | a ˙ N ran x h x ˙ N = a B | a h
83 30 adantl φ h SubGrp G h B
84 dfss7 h B a B | a h = h
85 83 84 sylib φ h SubGrp G a B | a h = h
86 85 adantr φ h SubGrp G N h a B | a h = h
87 82 86 eqtr2d φ h SubGrp G N h h = a B | a ˙ N ran x h x ˙ N
88 14 18 87 rspcedvd φ h SubGrp G N h f T h = a B | a ˙ N f
89 88 anasss φ h SubGrp G N h f T h = a B | a ˙ N f
90 10 adantr φ f T N NrmSGrp G
91 3 eleq2i f T f SubGrp Q
92 91 biimpi f T f SubGrp Q
93 92 adantl φ f T f SubGrp Q
94 1 6 7 90 93 nsgmgclem φ f T a B | a ˙ N f SubGrp G
95 94 adantr φ f T h = a B | a ˙ N f a B | a ˙ N f SubGrp G
96 eleq1 h = a B | a ˙ N f h SubGrp G a B | a ˙ N f SubGrp G
97 96 adantl φ f T h = a B | a ˙ N f h SubGrp G a B | a ˙ N f SubGrp G
98 95 97 mpbird φ f T h = a B | a ˙ N f h SubGrp G
99 44 adantr φ f T N B
100 25 ad2antrr φ f T a N N SubGrp G
101 simpr φ f T a N a N
102 7 grplsmid N SubGrp G a N a ˙ N = N
103 100 101 102 syl2anc φ f T a N a ˙ N = N
104 6 nsgqus0 N NrmSGrp G f SubGrp Q N f
105 90 93 104 syl2anc φ f T N f
106 105 adantr φ f T a N N f
107 103 106 eqeltrd φ f T a N a ˙ N f
108 99 107 ssrabdv φ f T N a B | a ˙ N f
109 108 adantr φ f T h = a B | a ˙ N f N a B | a ˙ N f
110 simpr φ f T h = a B | a ˙ N f h = a B | a ˙ N f
111 109 110 sseqtrrd φ f T h = a B | a ˙ N f N h
112 98 111 jca φ f T h = a B | a ˙ N f h SubGrp G N h
113 112 r19.29an φ f T h = a B | a ˙ N f h SubGrp G N h
114 89 113 impbida φ h SubGrp G N h f T h = a B | a ˙ N f
115 13 114 syl5bb φ h S f T h = a B | a ˙ N f
116 12 115 bitr4id φ h ran F h S
117 116 eqrdv φ ran F = S