Metamath Proof Explorer


Theorem ovolval5lem3

Description: The value of the Lebesgue outer measure for subsets of the reals, using covers of left-closed right-open intervals are used, instead of open intervals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5lem3.m M=y*|f2Aran.fy=sum^vol.f
ovolval5lem3.q Q=z*|f2Aran.fz=sum^vol.f
Assertion ovolval5lem3 supQ*<=supM*<

Proof

Step Hyp Ref Expression
1 ovolval5lem3.m M=y*|f2Aran.fy=sum^vol.f
2 ovolval5lem3.q Q=z*|f2Aran.fz=sum^vol.f
3 2 ssrab3 Q*
4 infxrcl Q*supQ*<*
5 3 4 mp1i supQ*<*
6 1 ssrab3 M*
7 infxrcl M*supM*<*
8 6 7 mp1i supM*<*
9 3 a1i Q*
10 6 a1i M*
11 1 reqabi yMy*f2Aran.fy=sum^vol.f
12 11 simprbi yMf2Aran.fy=sum^vol.f
13 coeq2 g=f.g=.f
14 13 rneqd g=fran.g=ran.f
15 14 unieqd g=fran.g=ran.f
16 15 sseq2d g=fAran.gAran.f
17 coeq2 g=fvol.g=vol.f
18 17 fveq2d g=fsum^vol.g=sum^vol.f
19 18 eqeq2d g=fz=sum^vol.gz=sum^vol.f
20 16 19 anbi12d g=fAran.gz=sum^vol.gAran.fz=sum^vol.f
21 20 cbvrexvw g2Aran.gz=sum^vol.gf2Aran.fz=sum^vol.f
22 21 rabbii z*|g2Aran.gz=sum^vol.g=z*|f2Aran.fz=sum^vol.f
23 2 22 eqtr4i Q=z*|g2Aran.gz=sum^vol.g
24 simp3r w+f2Aran.fy=sum^vol.fy=sum^vol.f
25 eqid sum^vol.m1stfmw2m2ndfm=sum^vol.m1stfmw2m2ndfm
26 elmapi f2f:2
27 26 3ad2ant2 w+f2Aran.fy=sum^vol.ff:2
28 simp3l w+f2Aran.fy=sum^vol.fAran.f
29 simp1 w+f2Aran.fy=sum^vol.fw+
30 2fveq3 m=n1stfm=1stfn
31 oveq2 m=n2m=2n
32 31 oveq2d m=nw2m=w2n
33 30 32 oveq12d m=n1stfmw2m=1stfnw2n
34 2fveq3 m=n2ndfm=2ndfn
35 33 34 opeq12d m=n1stfmw2m2ndfm=1stfnw2n2ndfn
36 35 cbvmptv m1stfmw2m2ndfm=n1stfnw2n2ndfn
37 23 24 25 27 28 29 36 ovolval5lem2 w+f2Aran.fy=sum^vol.fzQzy+𝑒w
38 37 rexlimdv3a w+f2Aran.fy=sum^vol.fzQzy+𝑒w
39 12 38 mpan9 yMw+zQzy+𝑒w
40 39 3adant1 yMw+zQzy+𝑒w
41 9 10 40 infleinf supQ*<supM*<
42 eqeq1 z=yz=sum^vol.fy=sum^vol.f
43 42 anbi2d z=yAran.fz=sum^vol.fAran.fy=sum^vol.f
44 43 rexbidv z=yf2Aran.fz=sum^vol.ff2Aran.fy=sum^vol.f
45 44 cbvrabv z*|f2Aran.fz=sum^vol.f=y*|f2Aran.fy=sum^vol.f
46 simpr f2Aran.fAran.f
47 ioossico 1stfn2ndfn1stfn2ndfn
48 47 a1i f2n1stfn2ndfn1stfn2ndfn
49 26 adantr f2nf:2
50 simpr f2nn
51 49 50 fvovco f2n.fn=1stfn2ndfn
52 49 50 fvovco f2n.fn=1stfn2ndfn
53 48 51 52 3sstr4d f2n.fn.fn
54 53 ralrimiva f2n.fn.fn
55 ss2iun n.fn.fnn.fnn.fn
56 54 55 syl f2n.fnn.fn
57 ioof .:*×*𝒫
58 57 a1i f2.:*×*𝒫
59 rexpssxrxp 2*×*
60 59 a1i f22*×*
61 58 60 26 fcoss f2.f:𝒫
62 61 ffnd f2.fFn
63 fniunfv .fFnn.fn=ran.f
64 62 63 syl f2n.fn=ran.f
65 icof .:*×*𝒫*
66 65 a1i f2.:*×*𝒫*
67 66 60 26 fcoss f2.f:𝒫*
68 67 ffnd f2.fFn
69 fniunfv .fFnn.fn=ran.f
70 68 69 syl f2n.fn=ran.f
71 56 64 70 3sstr3d f2ran.fran.f
72 71 adantr f2Aran.fran.fran.f
73 46 72 sstrd f2Aran.fAran.f
74 simpr f2y=sum^vol.fy=sum^vol.f
75 26 voliooicof f2vol.f=vol.f
76 75 fveq2d f2sum^vol.f=sum^vol.f
77 76 adantr f2y=sum^vol.fsum^vol.f=sum^vol.f
78 74 77 eqtrd f2y=sum^vol.fy=sum^vol.f
79 73 78 anim12dan f2Aran.fy=sum^vol.fAran.fy=sum^vol.f
80 79 ex f2Aran.fy=sum^vol.fAran.fy=sum^vol.f
81 80 reximia f2Aran.fy=sum^vol.ff2Aran.fy=sum^vol.f
82 81 a1i y*f2Aran.fy=sum^vol.ff2Aran.fy=sum^vol.f
83 82 ss2rabi y*|f2Aran.fy=sum^vol.fy*|f2Aran.fy=sum^vol.f
84 45 83 eqsstri z*|f2Aran.fz=sum^vol.fy*|f2Aran.fy=sum^vol.f
85 84 2 1 3sstr4i QM
86 infxrss QMM*supM*<supQ*<
87 85 6 86 mp2an supM*<supQ*<
88 87 a1i supM*<supQ*<
89 5 8 41 88 xrletrid supQ*<=supM*<
90 89 mptru supQ*<=supM*<