Metamath Proof Explorer


Theorem padicabvcxp

Description: All positive powers of the p-adic absolute value are absolute values. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
Assertion padicabvcxp PR+yJPyRA

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 3 padicval PyJPy=ify=00PPpCnty
5 4 adantlr PR+yJPy=ify=00PPpCnty
6 5 oveq1d PR+yJPyR=ify=00PPpCntyR
7 ovif ify=00PPpCntyR=ify=00RPPpCntyR
8 rpre R+R
9 8 adantl PR+R
10 9 recnd PR+R
11 rpne0 R+R0
12 11 adantl PR+R0
13 10 12 0cxpd PR+0R=0
14 13 adantr PR+y0R=0
15 14 ifeq1d PR+yify=00RPPpCntyR=ify=00PPpCntyR
16 7 15 eqtrid PR+yify=00PPpCntyR=ify=00PPpCntyR
17 df-ne y0¬y=0
18 pcqcl Pyy0PpCnty
19 18 adantlr PR+yy0PpCnty
20 19 zcnd PR+yy0PpCnty
21 10 adantr PR+yy0R
22 mulneg12 PpCntyRPpCntyR=PpCntyR
23 20 21 22 syl2anc PR+yy0PpCntyR=PpCntyR
24 21 negcld PR+yy0R
25 20 24 mulcomd PR+yy0PpCntyR=RPpCnty
26 23 25 eqtrd PR+yy0PpCntyR=RPpCnty
27 26 oveq2d PR+yy0PPpCntyR=PRPpCnty
28 prmuz2 PP2
29 28 adantr PR+P2
30 eluz2b2 P2P1<P
31 29 30 sylib PR+P1<P
32 31 simpld PR+P
33 32 nnrpd PR+P+
34 33 adantr PR+yy0P+
35 19 znegcld PR+yy0PpCnty
36 35 zred PR+yy0PpCnty
37 34 36 21 cxpmuld PR+yy0PPpCntyR=PPpCntyR
38 9 renegcld PR+R
39 38 adantr PR+yy0R
40 34 39 20 cxpmuld PR+yy0PRPpCnty=PRPpCnty
41 27 37 40 3eqtr3d PR+yy0PPpCntyR=PRPpCnty
42 32 nnred PR+P
43 42 recnd PR+P
44 43 adantr PR+yy0P
45 32 nnne0d PR+P0
46 45 adantr PR+yy0P0
47 44 46 35 cxpexpzd PR+yy0PPpCnty=PPpCnty
48 47 oveq1d PR+yy0PPpCntyR=PPpCntyR
49 33 38 rpcxpcld PR+PR+
50 49 adantr PR+yy0PR+
51 50 rpcnd PR+yy0PR
52 50 rpne0d PR+yy0PR0
53 51 52 19 cxpexpzd PR+yy0PRPpCnty=PRPpCnty
54 41 48 53 3eqtr3d PR+yy0PPpCntyR=PRPpCnty
55 54 anassrs PR+yy0PPpCntyR=PRPpCnty
56 17 55 sylan2br PR+y¬y=0PPpCntyR=PRPpCnty
57 56 ifeq2da PR+yify=00PPpCntyR=ify=00PRPpCnty
58 6 16 57 3eqtrd PR+yJPyR=ify=00PRPpCnty
59 58 mpteq2dva PR+yJPyR=yify=00PRPpCnty
60 rpre PR+PR
61 49 60 syl PR+PR
62 rpgt0 PR+0<PR
63 49 62 syl PR+0<PR
64 rpgt0 R+0<R
65 64 adantl PR+0<R
66 9 lt0neg2d PR+0<RR<0
67 65 66 mpbid PR+R<0
68 31 simprd PR+1<P
69 0red PR+0
70 42 68 38 69 cxpltd PR+R<0PR<P0
71 67 70 mpbid PR+PR<P0
72 43 cxp0d PR+P0=1
73 71 72 breqtrd PR+PR<1
74 0xr 0*
75 1xr 1*
76 elioo2 0*1*PR01PR0<PRPR<1
77 74 75 76 mp2an PR01PR0<PRPR<1
78 61 63 73 77 syl3anbrc PR+PR01
79 eqid yify=00PRPpCnty=yify=00PRPpCnty
80 1 2 79 padicabv PPR01yify=00PRPpCntyA
81 78 80 syldan PR+yify=00PRPpCntyA
82 59 81 eqeltrd PR+yJPyRA