Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Pell equations 2: Algebraic number theory of the solution set
pell1qrgaplem
Next ⟩
pell1qrgap
Metamath Proof Explorer
Ascii
Unicode
Theorem
pell1qrgaplem
Description:
Lemma for
pell1qrgap
.
(Contributed by
Stefan O'Rear
, 18-Sep-2014)
Ref
Expression
Assertion
pell1qrgaplem
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
+
D
≤
A
+
D
B
Proof
Step
Hyp
Ref
Expression
1
nnrp
⊢
D
∈
ℕ
→
D
∈
ℝ
+
2
1
ad2antrr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
∈
ℝ
+
3
1rp
⊢
1
∈
ℝ
+
4
3
a1i
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
∈
ℝ
+
5
2
4
rpaddcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
∈
ℝ
+
6
5
rpsqrtcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
∈
ℝ
+
7
6
rpred
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
∈
ℝ
8
2
rpsqrtcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
∈
ℝ
+
9
8
rpred
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
∈
ℝ
10
nn0re
⊢
A
∈
ℕ
0
→
A
∈
ℝ
11
10
adantr
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
→
A
∈
ℝ
12
11
ad2antlr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
∈
ℝ
13
nn0re
⊢
B
∈
ℕ
0
→
B
∈
ℝ
14
13
adantl
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
→
B
∈
ℝ
15
14
ad2antlr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
B
∈
ℝ
16
9
15
remulcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
B
∈
ℝ
17
2
rpred
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
∈
ℝ
18
1re
⊢
1
∈
ℝ
19
18
a1i
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
∈
ℝ
20
15
resqcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
B
2
∈
ℝ
21
19
20
resubcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
−
B
2
∈
ℝ
22
17
21
remulcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
1
−
B
2
∈
ℝ
23
0red
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
0
∈
ℝ
24
17
23
remulcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
⋅
0
∈
ℝ
25
12
resqcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
∈
ℝ
26
sq1
⊢
1
2
=
1
27
26
a1i
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
2
=
1
28
nnge1
⊢
B
∈
ℕ
→
1
≤
B
29
28
adantl
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
∈
ℕ
→
1
≤
B
30
simplrl
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
1
<
A
+
D
B
31
oveq1
⊢
B
=
0
→
B
2
=
0
2
32
31
adantl
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
B
2
=
0
2
33
sq0
⊢
0
2
=
0
34
32
33
eqtrdi
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
B
2
=
0
35
34
oveq2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
B
2
=
D
⋅
0
36
2
rpcnd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
∈
ℂ
37
36
adantr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
∈
ℂ
38
37
mul01d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
⋅
0
=
0
39
35
38
eqtrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
B
2
=
0
40
39
oveq2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
2
−
D
B
2
=
A
2
−
0
41
simplrr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
2
−
D
B
2
=
1
42
12
recnd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
∈
ℂ
43
42
sqcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
∈
ℂ
44
43
adantr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
2
∈
ℂ
45
44
subid1d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
2
−
0
=
A
2
46
40
41
45
3eqtr3d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
1
=
A
2
47
26
46
eqtr2id
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
2
=
1
2
48
nn0ge0
⊢
A
∈
ℕ
0
→
0
≤
A
49
48
adantr
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
→
0
≤
A
50
49
ad2antlr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
0
≤
A
51
0le1
⊢
0
≤
1
52
51
a1i
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
0
≤
1
53
sq11
⊢
A
∈
ℝ
∧
0
≤
A
∧
1
∈
ℝ
∧
0
≤
1
→
A
2
=
1
2
↔
A
=
1
54
12
50
19
52
53
syl22anc
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
=
1
2
↔
A
=
1
55
54
adantr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
2
=
1
2
↔
A
=
1
56
47
55
mpbid
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
=
1
57
simpr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
B
=
0
58
57
oveq2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
B
=
D
⋅
0
59
8
rpcnd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
∈
ℂ
60
59
adantr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
∈
ℂ
61
60
mul01d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
⋅
0
=
0
62
58
61
eqtrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
D
B
=
0
63
56
62
oveq12d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
+
D
B
=
1
+
0
64
1p0e1
⊢
1
+
0
=
1
65
63
64
eqtrdi
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
A
+
D
B
=
1
66
30
65
breqtrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
1
<
1
67
18
ltnri
⊢
¬
1
<
1
68
pm2.24
⊢
1
<
1
→
¬
1
<
1
→
1
≤
B
69
66
67
68
mpisyl
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
∧
B
=
0
→
1
≤
B
70
simplrr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
B
∈
ℕ
0
71
elnn0
⊢
B
∈
ℕ
0
↔
B
∈
ℕ
∨
B
=
0
72
70
71
sylib
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
B
∈
ℕ
∨
B
=
0
73
29
69
72
mpjaodan
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
≤
B
74
nn0ge0
⊢
B
∈
ℕ
0
→
0
≤
B
75
74
adantl
⊢
A
∈
ℕ
0
∧
B
∈
ℕ
0
→
0
≤
B
76
75
ad2antlr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
0
≤
B
77
19
15
52
76
le2sqd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
≤
B
↔
1
2
≤
B
2
78
73
77
mpbid
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
2
≤
B
2
79
27
78
eqbrtrrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
≤
B
2
80
19
20
suble0d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
−
B
2
≤
0
↔
1
≤
B
2
81
79
80
mpbird
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
−
B
2
≤
0
82
21
23
2
lemul2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
−
B
2
≤
0
↔
D
1
−
B
2
≤
D
⋅
0
83
81
82
mpbid
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
1
−
B
2
≤
D
⋅
0
84
22
24
25
83
leadd2dd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
+
D
1
−
B
2
≤
A
2
+
D
⋅
0
85
5
rpcnd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
∈
ℂ
86
85
sqsqrtd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
2
=
D
+
1
87
simprr
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
−
D
B
2
=
1
88
87
eqcomd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
=
A
2
−
D
B
2
89
88
oveq2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
=
D
+
A
2
-
D
B
2
90
15
recnd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
B
∈
ℂ
91
90
sqcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
B
2
∈
ℂ
92
36
91
mulcld
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
B
2
∈
ℂ
93
36
43
92
addsub12d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
A
2
-
D
B
2
=
A
2
+
D
-
D
B
2
94
19
recnd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
∈
ℂ
95
36
94
91
subdid
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
1
−
B
2
=
D
⋅
1
−
D
B
2
96
36
mulridd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
⋅
1
=
D
97
96
oveq1d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
⋅
1
−
D
B
2
=
D
−
D
B
2
98
95
97
eqtr2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
−
D
B
2
=
D
1
−
B
2
99
98
oveq2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
+
D
-
D
B
2
=
A
2
+
D
1
−
B
2
100
93
99
eqtrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
A
2
-
D
B
2
=
A
2
+
D
1
−
B
2
101
86
89
100
3eqtrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
2
=
A
2
+
D
1
−
B
2
102
36
mul01d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
⋅
0
=
0
103
102
oveq2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
+
D
⋅
0
=
A
2
+
0
104
43
addridd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
+
0
=
A
2
105
103
104
eqtr2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
A
2
=
A
2
+
D
⋅
0
106
84
101
105
3brtr4d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
2
≤
A
2
107
6
rpge0d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
0
≤
D
+
1
108
7
12
107
50
le2sqd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
≤
A
↔
D
+
1
2
≤
A
2
109
106
108
mpbird
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
≤
A
110
59
mulridd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
⋅
1
=
D
111
19
15
8
lemul2d
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
1
≤
B
↔
D
⋅
1
≤
D
B
112
73
111
mpbid
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
⋅
1
≤
D
B
113
110
112
eqbrtrrd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
≤
D
B
114
7
9
12
16
109
113
le2addd
⊢
D
∈
ℕ
∧
A
∈
ℕ
0
∧
B
∈
ℕ
0
∧
1
<
A
+
D
B
∧
A
2
−
D
B
2
=
1
→
D
+
1
+
D
≤
A
+
D
B