Metamath Proof Explorer


Theorem pell1qrgaplem

Description: Lemma for pell1qrgap . (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell1qrgaplem DA0B01<A+DBA2DB2=1D+1+DA+DB

Proof

Step Hyp Ref Expression
1 nnrp DD+
2 1 ad2antrr DA0B01<A+DBA2DB2=1D+
3 1rp 1+
4 3 a1i DA0B01<A+DBA2DB2=11+
5 2 4 rpaddcld DA0B01<A+DBA2DB2=1D+1+
6 5 rpsqrtcld DA0B01<A+DBA2DB2=1D+1+
7 6 rpred DA0B01<A+DBA2DB2=1D+1
8 2 rpsqrtcld DA0B01<A+DBA2DB2=1D+
9 8 rpred DA0B01<A+DBA2DB2=1D
10 nn0re A0A
11 10 adantr A0B0A
12 11 ad2antlr DA0B01<A+DBA2DB2=1A
13 nn0re B0B
14 13 adantl A0B0B
15 14 ad2antlr DA0B01<A+DBA2DB2=1B
16 9 15 remulcld DA0B01<A+DBA2DB2=1DB
17 2 rpred DA0B01<A+DBA2DB2=1D
18 1re 1
19 18 a1i DA0B01<A+DBA2DB2=11
20 15 resqcld DA0B01<A+DBA2DB2=1B2
21 19 20 resubcld DA0B01<A+DBA2DB2=11B2
22 17 21 remulcld DA0B01<A+DBA2DB2=1D1B2
23 0red DA0B01<A+DBA2DB2=10
24 17 23 remulcld DA0B01<A+DBA2DB2=1D0
25 12 resqcld DA0B01<A+DBA2DB2=1A2
26 sq1 12=1
27 26 a1i DA0B01<A+DBA2DB2=112=1
28 nnge1 B1B
29 28 adantl DA0B01<A+DBA2DB2=1B1B
30 simplrl DA0B01<A+DBA2DB2=1B=01<A+DB
31 oveq1 B=0B2=02
32 31 adantl DA0B01<A+DBA2DB2=1B=0B2=02
33 sq0 02=0
34 32 33 eqtrdi DA0B01<A+DBA2DB2=1B=0B2=0
35 34 oveq2d DA0B01<A+DBA2DB2=1B=0DB2=D0
36 2 rpcnd DA0B01<A+DBA2DB2=1D
37 36 adantr DA0B01<A+DBA2DB2=1B=0D
38 37 mul01d DA0B01<A+DBA2DB2=1B=0D0=0
39 35 38 eqtrd DA0B01<A+DBA2DB2=1B=0DB2=0
40 39 oveq2d DA0B01<A+DBA2DB2=1B=0A2DB2=A20
41 simplrr DA0B01<A+DBA2DB2=1B=0A2DB2=1
42 12 recnd DA0B01<A+DBA2DB2=1A
43 42 sqcld DA0B01<A+DBA2DB2=1A2
44 43 adantr DA0B01<A+DBA2DB2=1B=0A2
45 44 subid1d DA0B01<A+DBA2DB2=1B=0A20=A2
46 40 41 45 3eqtr3d DA0B01<A+DBA2DB2=1B=01=A2
47 26 46 eqtr2id DA0B01<A+DBA2DB2=1B=0A2=12
48 nn0ge0 A00A
49 48 adantr A0B00A
50 49 ad2antlr DA0B01<A+DBA2DB2=10A
51 0le1 01
52 51 a1i DA0B01<A+DBA2DB2=101
53 sq11 A0A101A2=12A=1
54 12 50 19 52 53 syl22anc DA0B01<A+DBA2DB2=1A2=12A=1
55 54 adantr DA0B01<A+DBA2DB2=1B=0A2=12A=1
56 47 55 mpbid DA0B01<A+DBA2DB2=1B=0A=1
57 simpr DA0B01<A+DBA2DB2=1B=0B=0
58 57 oveq2d DA0B01<A+DBA2DB2=1B=0DB=D0
59 8 rpcnd DA0B01<A+DBA2DB2=1D
60 59 adantr DA0B01<A+DBA2DB2=1B=0D
61 60 mul01d DA0B01<A+DBA2DB2=1B=0D0=0
62 58 61 eqtrd DA0B01<A+DBA2DB2=1B=0DB=0
63 56 62 oveq12d DA0B01<A+DBA2DB2=1B=0A+DB=1+0
64 1p0e1 1+0=1
65 63 64 eqtrdi DA0B01<A+DBA2DB2=1B=0A+DB=1
66 30 65 breqtrd DA0B01<A+DBA2DB2=1B=01<1
67 18 ltnri ¬1<1
68 pm2.24 1<1¬1<11B
69 66 67 68 mpisyl DA0B01<A+DBA2DB2=1B=01B
70 simplrr DA0B01<A+DBA2DB2=1B0
71 elnn0 B0BB=0
72 70 71 sylib DA0B01<A+DBA2DB2=1BB=0
73 29 69 72 mpjaodan DA0B01<A+DBA2DB2=11B
74 nn0ge0 B00B
75 74 adantl A0B00B
76 75 ad2antlr DA0B01<A+DBA2DB2=10B
77 19 15 52 76 le2sqd DA0B01<A+DBA2DB2=11B12B2
78 73 77 mpbid DA0B01<A+DBA2DB2=112B2
79 27 78 eqbrtrrd DA0B01<A+DBA2DB2=11B2
80 19 20 suble0d DA0B01<A+DBA2DB2=11B201B2
81 79 80 mpbird DA0B01<A+DBA2DB2=11B20
82 21 23 2 lemul2d DA0B01<A+DBA2DB2=11B20D1B2D0
83 81 82 mpbid DA0B01<A+DBA2DB2=1D1B2D0
84 22 24 25 83 leadd2dd DA0B01<A+DBA2DB2=1A2+D1B2A2+D0
85 5 rpcnd DA0B01<A+DBA2DB2=1D+1
86 85 sqsqrtd DA0B01<A+DBA2DB2=1D+12=D+1
87 simprr DA0B01<A+DBA2DB2=1A2DB2=1
88 87 eqcomd DA0B01<A+DBA2DB2=11=A2DB2
89 88 oveq2d DA0B01<A+DBA2DB2=1D+1=D+A2-DB2
90 15 recnd DA0B01<A+DBA2DB2=1B
91 90 sqcld DA0B01<A+DBA2DB2=1B2
92 36 91 mulcld DA0B01<A+DBA2DB2=1DB2
93 36 43 92 addsub12d DA0B01<A+DBA2DB2=1D+A2-DB2=A2+D-DB2
94 19 recnd DA0B01<A+DBA2DB2=11
95 36 94 91 subdid DA0B01<A+DBA2DB2=1D1B2=D1DB2
96 36 mulridd DA0B01<A+DBA2DB2=1D1=D
97 96 oveq1d DA0B01<A+DBA2DB2=1D1DB2=DDB2
98 95 97 eqtr2d DA0B01<A+DBA2DB2=1DDB2=D1B2
99 98 oveq2d DA0B01<A+DBA2DB2=1A2+D-DB2=A2+D1B2
100 93 99 eqtrd DA0B01<A+DBA2DB2=1D+A2-DB2=A2+D1B2
101 86 89 100 3eqtrd DA0B01<A+DBA2DB2=1D+12=A2+D1B2
102 36 mul01d DA0B01<A+DBA2DB2=1D0=0
103 102 oveq2d DA0B01<A+DBA2DB2=1A2+D0=A2+0
104 43 addridd DA0B01<A+DBA2DB2=1A2+0=A2
105 103 104 eqtr2d DA0B01<A+DBA2DB2=1A2=A2+D0
106 84 101 105 3brtr4d DA0B01<A+DBA2DB2=1D+12A2
107 6 rpge0d DA0B01<A+DBA2DB2=10D+1
108 7 12 107 50 le2sqd DA0B01<A+DBA2DB2=1D+1AD+12A2
109 106 108 mpbird DA0B01<A+DBA2DB2=1D+1A
110 59 mulridd DA0B01<A+DBA2DB2=1D1=D
111 19 15 8 lemul2d DA0B01<A+DBA2DB2=11BD1DB
112 73 111 mpbid DA0B01<A+DBA2DB2=1D1DB
113 110 112 eqbrtrrd DA0B01<A+DBA2DB2=1DDB
114 7 9 12 16 109 113 le2addd DA0B01<A+DBA2DB2=1D+1+DA+DB