Metamath Proof Explorer


Theorem pimdecfgtioo

Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimdecfgtioo.x xφ
pimdecfgtioo.h yφ
pimdecfgtioo.a φA
pimdecfgtioo.f φF:A*
pimdecfgtioo.d φxAyAxyFyFx
pimdecfgtioo.r φR*
pimdecfgtioo.y Y=xA|R<Fx
pimdecfgtioo.c S=supY*<
pimdecfgtioo.e φ¬SY
pimdecfgtioo.i I=−∞S
Assertion pimdecfgtioo φY=IA

Proof

Step Hyp Ref Expression
1 pimdecfgtioo.x xφ
2 pimdecfgtioo.h yφ
3 pimdecfgtioo.a φA
4 pimdecfgtioo.f φF:A*
5 pimdecfgtioo.d φxAyAxyFyFx
6 pimdecfgtioo.r φR*
7 pimdecfgtioo.y Y=xA|R<Fx
8 pimdecfgtioo.c S=supY*<
9 pimdecfgtioo.e φ¬SY
10 pimdecfgtioo.i I=−∞S
11 ssrab2 xA|R<FxA
12 7 11 eqsstri YA
13 12 a1i φYA
14 13 3 sstrd φY
15 14 8 9 10 ressioosup φYI
16 15 13 ssind φYIA
17 elinel2 xIAxA
18 17 adantl φxIAxA
19 mnfxr −∞*
20 19 a1i φxIA−∞*
21 ressxr *
22 14 21 sstrdi φY*
23 22 supxrcld φsupY*<*
24 8 23 eqeltrid φS*
25 24 adantr φxIAS*
26 elinel1 xIAxI
27 26 10 eleqtrdi xIAx−∞S
28 27 adantl φxIAx−∞S
29 iooltub −∞*S*x−∞Sx<S
30 20 25 28 29 syl3anc φxIAx<S
31 30 adantr φxIA¬R<Fxx<S
32 simpr φxIA¬R<Fx¬R<Fx
33 4 adantr φxIAF:A*
34 33 18 ffvelcdmd φxIAFx*
35 34 adantr φxIA¬R<FxFx*
36 6 adantr φxIAR*
37 36 adantr φxIA¬R<FxR*
38 35 37 xrlenltd φxIA¬R<FxFxR¬R<Fx
39 32 38 mpbird φxIA¬R<FxFxR
40 nfv yxIA
41 2 40 nfan yφxIA
42 nfv yFxR
43 41 42 nfan yφxIAFxR
44 fveq2 x=yFx=Fy
45 44 breq2d x=yR<FxR<Fy
46 45 7 elrab2 yYyAR<Fy
47 46 biimpi yYyAR<Fy
48 47 simprd yYR<Fy
49 48 ad2antlr φxIAFxRyY¬yxR<Fy
50 3 adantr φxIAA
51 50 18 sseldd φxIAx
52 51 ad2antrr φxIAyY¬yxx
53 14 sselda φyYy
54 53 ad4ant13 φxIAyY¬yxy
55 simpr φxIAyY¬yx¬yx
56 52 54 ltnled φxIAyY¬yxx<y¬yx
57 55 56 mpbird φxIAyY¬yxx<y
58 52 54 57 ltled φxIAyY¬yxxy
59 58 adantllr φxIAFxRyY¬yxxy
60 4 adantr φyYF:A*
61 13 sselda φyYyA
62 60 61 ffvelcdmd φyYFy*
63 62 ad5ant14 φxIAFxRyYxyFy*
64 34 ad3antrrr φxIAFxRyYxyFx*
65 36 ad3antrrr φxIAFxRyYxyR*
66 simpr φxIAyYxyxy
67 rspa xAyAxyFyFxxAyAxyFyFx
68 5 17 67 syl2an φxIAyAxyFyFx
69 68 ad2antrr φxIAyYxyyAxyFyFx
70 61 ad4ant13 φxIAyYxyyA
71 rspa yAxyFyFxyAxyFyFx
72 69 70 71 syl2anc φxIAyYxyxyFyFx
73 66 72 mpd φxIAyYxyFyFx
74 73 adantllr φxIAFxRyYxyFyFx
75 simpllr φxIAFxRyYxyFxR
76 63 64 65 74 75 xrletrd φxIAFxRyYxyFyR
77 63 65 xrlenltd φxIAFxRyYxyFyR¬R<Fy
78 76 77 mpbid φxIAFxRyYxy¬R<Fy
79 59 78 syldan φxIAFxRyY¬yx¬R<Fy
80 49 79 condan φxIAFxRyYyx
81 80 ex φxIAFxRyYyx
82 43 81 ralrimi φxIAFxRyYyx
83 39 82 syldan φxIA¬R<FxyYyx
84 22 adantr φxIAY*
85 21 51 sselid φxIAx*
86 supxrleub Y*x*supY*<xyYyx
87 84 85 86 syl2anc φxIAsupY*<xyYyx
88 87 adantr φxIA¬R<FxsupY*<xyYyx
89 83 88 mpbird φxIA¬R<FxsupY*<x
90 8 89 eqbrtrid φxIA¬R<FxSx
91 25 adantr φxIA¬R<FxS*
92 85 adantr φxIA¬R<Fxx*
93 91 92 xrlenltd φxIA¬R<FxSx¬x<S
94 90 93 mpbid φxIA¬R<Fx¬x<S
95 31 94 condan φxIAR<Fx
96 18 95 jca φxIAxAR<Fx
97 7 reqabi xYxAR<Fx
98 96 97 sylibr φxIAxY
99 98 ex φxIAxY
100 1 99 ralrimi φxIAxY
101 nfcv _xIA
102 nfrab1 _xxA|R<Fx
103 7 102 nfcxfr _xY
104 101 103 dfss3f IAYxIAxY
105 100 104 sylibr φIAY
106 16 105 eqssd φY=IA