Metamath Proof Explorer


Theorem pjthlem2

Description: Lemma for pjth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014)

Ref Expression
Hypotheses pjthlem.v V=BaseW
pjthlem.n N=normW
pjthlem.p +˙=+W
pjthlem.m -˙=-W
pjthlem.h ,˙=𝑖W
pjthlem.l L=LSubSpW
pjthlem.1 φWℂHil
pjthlem.2 φUL
pjthlem.4 φAV
pjthlem.j J=TopOpenW
pjthlem.s ˙=LSSumW
pjthlem.o O=ocvW
pjthlem.3 φUClsdJ
Assertion pjthlem2 φAU˙OU

Proof

Step Hyp Ref Expression
1 pjthlem.v V=BaseW
2 pjthlem.n N=normW
3 pjthlem.p +˙=+W
4 pjthlem.m -˙=-W
5 pjthlem.h ,˙=𝑖W
6 pjthlem.l L=LSubSpW
7 pjthlem.1 φWℂHil
8 pjthlem.2 φUL
9 pjthlem.4 φAV
10 pjthlem.j J=TopOpenW
11 pjthlem.s ˙=LSSumW
12 pjthlem.o O=ocvW
13 pjthlem.3 φUClsdJ
14 hlcph WℂHilWCPreHil
15 7 14 syl φWCPreHil
16 8 6 eleqtrdi φULSubSpW
17 hlcms WℂHilWCMetSp
18 7 17 syl φWCMetSp
19 1 6 lssss ULUV
20 8 19 syl φUV
21 eqid W𝑠U=W𝑠U
22 21 1 10 cmsss WCMetSpUVW𝑠UCMetSpUClsdJ
23 18 20 22 syl2anc φW𝑠UCMetSpUClsdJ
24 13 23 mpbird φW𝑠UCMetSp
25 1 4 2 15 16 24 9 minvec φ∃!xUyUNA-˙xNA-˙y
26 reurex ∃!xUyUNA-˙xNA-˙yxUyUNA-˙xNA-˙y
27 25 26 syl φxUyUNA-˙xNA-˙y
28 15 adantr φxUyUNA-˙xNA-˙yWCPreHil
29 cphlmod WCPreHilWLMod
30 28 29 syl φxUyUNA-˙xNA-˙yWLMod
31 lmodabl WLModWAbel
32 30 31 syl φxUyUNA-˙xNA-˙yWAbel
33 8 adantr φxUyUNA-˙xNA-˙yUL
34 33 19 syl φxUyUNA-˙xNA-˙yUV
35 simprl φxUyUNA-˙xNA-˙yxU
36 34 35 sseldd φxUyUNA-˙xNA-˙yxV
37 9 adantr φxUyUNA-˙xNA-˙yAV
38 1 3 4 ablpncan3 WAbelxVAVx+˙A-˙x=A
39 32 36 37 38 syl12anc φxUyUNA-˙xNA-˙yx+˙A-˙x=A
40 6 lsssssubg WLModLSubGrpW
41 30 40 syl φxUyUNA-˙xNA-˙yLSubGrpW
42 41 33 sseldd φxUyUNA-˙xNA-˙yUSubGrpW
43 cphphl WCPreHilWPreHil
44 28 43 syl φxUyUNA-˙xNA-˙yWPreHil
45 1 12 6 ocvlss WPreHilUVOUL
46 44 34 45 syl2anc φxUyUNA-˙xNA-˙yOUL
47 41 46 sseldd φxUyUNA-˙xNA-˙yOUSubGrpW
48 1 4 lmodvsubcl WLModAVxVA-˙xV
49 30 37 36 48 syl3anc φxUyUNA-˙xNA-˙yA-˙xV
50 7 ad2antrr φxUyUNA-˙xNA-˙yzUWℂHil
51 33 adantr φxUyUNA-˙xNA-˙yzUUL
52 49 adantr φxUyUNA-˙xNA-˙yzUA-˙xV
53 simpr φxUyUNA-˙xNA-˙yzUzU
54 oveq2 y=w+˙xA-˙y=A-˙w+˙x
55 54 fveq2d y=w+˙xNA-˙y=NA-˙w+˙x
56 55 breq2d y=w+˙xNA-˙xNA-˙yNA-˙xNA-˙w+˙x
57 simplrr φxUyUNA-˙xNA-˙ywUyUNA-˙xNA-˙y
58 30 adantr φxUyUNA-˙xNA-˙ywUWLMod
59 33 adantr φxUyUNA-˙xNA-˙ywUUL
60 simpr φxUyUNA-˙xNA-˙ywUwU
61 35 adantr φxUyUNA-˙xNA-˙ywUxU
62 3 6 lssvacl WLModULwUxUw+˙xU
63 58 59 60 61 62 syl22anc φxUyUNA-˙xNA-˙ywUw+˙xU
64 56 57 63 rspcdva φxUyUNA-˙xNA-˙ywUNA-˙xNA-˙w+˙x
65 lmodgrp WLModWGrp
66 30 65 syl φxUyUNA-˙xNA-˙yWGrp
67 66 adantr φxUyUNA-˙xNA-˙ywUWGrp
68 37 adantr φxUyUNA-˙xNA-˙ywUAV
69 36 adantr φxUyUNA-˙xNA-˙ywUxV
70 34 sselda φxUyUNA-˙xNA-˙ywUwV
71 1 3 4 grpsubsub4 WGrpAVxVwVA-˙x-˙w=A-˙w+˙x
72 67 68 69 70 71 syl13anc φxUyUNA-˙xNA-˙ywUA-˙x-˙w=A-˙w+˙x
73 72 fveq2d φxUyUNA-˙xNA-˙ywUNA-˙x-˙w=NA-˙w+˙x
74 64 73 breqtrrd φxUyUNA-˙xNA-˙ywUNA-˙xNA-˙x-˙w
75 74 ralrimiva φxUyUNA-˙xNA-˙ywUNA-˙xNA-˙x-˙w
76 75 adantr φxUyUNA-˙xNA-˙yzUwUNA-˙xNA-˙x-˙w
77 eqid A-˙x,˙zz,˙z+1=A-˙x,˙zz,˙z+1
78 1 2 3 4 5 6 50 51 52 53 76 77 pjthlem1 φxUyUNA-˙xNA-˙yzUA-˙x,˙z=0
79 28 adantr φxUyUNA-˙xNA-˙yzUWCPreHil
80 cphclm WCPreHilWCMod
81 79 80 syl φxUyUNA-˙xNA-˙yzUWCMod
82 eqid ScalarW=ScalarW
83 82 clm0 WCMod0=0ScalarW
84 81 83 syl φxUyUNA-˙xNA-˙yzU0=0ScalarW
85 78 84 eqtrd φxUyUNA-˙xNA-˙yzUA-˙x,˙z=0ScalarW
86 85 ralrimiva φxUyUNA-˙xNA-˙yzUA-˙x,˙z=0ScalarW
87 eqid 0ScalarW=0ScalarW
88 1 5 82 87 12 elocv A-˙xOUUVA-˙xVzUA-˙x,˙z=0ScalarW
89 34 49 86 88 syl3anbrc φxUyUNA-˙xNA-˙yA-˙xOU
90 3 11 lsmelvali USubGrpWOUSubGrpWxUA-˙xOUx+˙A-˙xU˙OU
91 42 47 35 89 90 syl22anc φxUyUNA-˙xNA-˙yx+˙A-˙xU˙OU
92 39 91 eqeltrrd φxUyUNA-˙xNA-˙yAU˙OU
93 27 92 rexlimddv φAU˙OU