Metamath Proof Explorer


Theorem plyexmo

Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014)

Ref Expression
Assertion plyexmo D¬DFin*ppPolySpD=F

Proof

Step Hyp Ref Expression
1 simplr D¬DFinpPolypD=FaPolyaD=F¬DFin
2 simpll D¬DFinpPolypD=FaPolyaD=FD
3 2 sseld D¬DFinpPolypD=FaPolyaD=FbDb
4 simprll D¬DFinpPolypD=FaPolyaD=FpPoly
5 plyf pPolyp:
6 4 5 syl D¬DFinpPolypD=FaPolyaD=Fp:
7 6 ffnd D¬DFinpPolypD=FaPolyaD=FpFn
8 7 adantr D¬DFinpPolypD=FaPolyaD=FbDpFn
9 simprrl D¬DFinpPolypD=FaPolyaD=FaPoly
10 plyf aPolya:
11 9 10 syl D¬DFinpPolypD=FaPolyaD=Fa:
12 11 ffnd D¬DFinpPolypD=FaPolyaD=FaFn
13 12 adantr D¬DFinpPolypD=FaPolyaD=FbDaFn
14 cnex V
15 14 a1i D¬DFinpPolypD=FaPolyaD=FbDV
16 2 sselda D¬DFinpPolypD=FaPolyaD=FbDb
17 fnfvof pFnaFnVbpfab=pbab
18 8 13 15 16 17 syl22anc D¬DFinpPolypD=FaPolyaD=FbDpfab=pbab
19 6 adantr D¬DFinpPolypD=FaPolyaD=FbDp:
20 19 16 ffvelcdmd D¬DFinpPolypD=FaPolyaD=FbDpb
21 simprlr D¬DFinpPolypD=FaPolyaD=FpD=F
22 simprrr D¬DFinpPolypD=FaPolyaD=FaD=F
23 21 22 eqtr4d D¬DFinpPolypD=FaPolyaD=FpD=aD
24 23 adantr D¬DFinpPolypD=FaPolyaD=FbDpD=aD
25 24 fveq1d D¬DFinpPolypD=FaPolyaD=FbDpDb=aDb
26 fvres bDpDb=pb
27 26 adantl D¬DFinpPolypD=FaPolyaD=FbDpDb=pb
28 fvres bDaDb=ab
29 28 adantl D¬DFinpPolypD=FaPolyaD=FbDaDb=ab
30 25 27 29 3eqtr3d D¬DFinpPolypD=FaPolyaD=FbDpb=ab
31 20 30 subeq0bd D¬DFinpPolypD=FaPolyaD=FbDpbab=0
32 18 31 eqtrd D¬DFinpPolypD=FaPolyaD=FbDpfab=0
33 32 ex D¬DFinpPolypD=FaPolyaD=FbDpfab=0
34 3 33 jcad D¬DFinpPolypD=FaPolyaD=FbDbpfab=0
35 plysubcl pPolyaPolypfaPoly
36 4 9 35 syl2anc D¬DFinpPolypD=FaPolyaD=FpfaPoly
37 plyf pfaPolypfa:
38 ffn pfa:pfaFn
39 fniniseg pfaFnbpfa-10bpfab=0
40 36 37 38 39 4syl D¬DFinpPolypD=FaPolyaD=Fbpfa-10bpfab=0
41 34 40 sylibrd D¬DFinpPolypD=FaPolyaD=FbDbpfa-10
42 41 ssrdv D¬DFinpPolypD=FaPolyaD=FDpfa-10
43 ssfi pfa-10FinDpfa-10DFin
44 43 expcom Dpfa-10pfa-10FinDFin
45 42 44 syl D¬DFinpPolypD=FaPolyaD=Fpfa-10FinDFin
46 1 45 mtod D¬DFinpPolypD=FaPolyaD=F¬pfa-10Fin
47 neqne ¬pfa=0𝑝pfa0𝑝
48 eqid pfa-10=pfa-10
49 48 fta1 pfaPolypfa0𝑝pfa-10Finpfa-10degpfa
50 36 47 49 syl2an D¬DFinpPolypD=FaPolyaD=F¬pfa=0𝑝pfa-10Finpfa-10degpfa
51 50 simpld D¬DFinpPolypD=FaPolyaD=F¬pfa=0𝑝pfa-10Fin
52 51 ex D¬DFinpPolypD=FaPolyaD=F¬pfa=0𝑝pfa-10Fin
53 46 52 mt3d D¬DFinpPolypD=FaPolyaD=Fpfa=0𝑝
54 df-0p 0𝑝=×0
55 53 54 eqtrdi D¬DFinpPolypD=FaPolyaD=Fpfa=×0
56 ofsubeq0 Vp:a:pfa=×0p=a
57 14 6 11 56 mp3an2i D¬DFinpPolypD=FaPolyaD=Fpfa=×0p=a
58 55 57 mpbid D¬DFinpPolypD=FaPolyaD=Fp=a
59 58 ex D¬DFinpPolypD=FaPolyaD=Fp=a
60 59 alrimivv D¬DFinpapPolypD=FaPolyaD=Fp=a
61 eleq1w p=apPolyaPoly
62 reseq1 p=apD=aD
63 62 eqeq1d p=apD=FaD=F
64 61 63 anbi12d p=apPolypD=FaPolyaD=F
65 64 mo4 *ppPolypD=FpapPolypD=FaPolyaD=Fp=a
66 60 65 sylibr D¬DFin*ppPolypD=F
67 plyssc PolySPoly
68 67 sseli pPolySpPoly
69 68 anim1i pPolySpD=FpPolypD=F
70 69 moimi *ppPolypD=F*ppPolySpD=F
71 66 70 syl D¬DFin*ppPolySpD=F