Metamath Proof Explorer


Theorem pntlemg

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, M is j^* and N is ĵ. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntlem1.z φZW+∞
pntlem1.m M=logXlogK+1
pntlem1.n N=logZlogK2
Assertion pntlemg φMNMlogZlogK4NM

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntlem1.z φZW+∞
16 pntlem1.m M=logXlogK+1
17 pntlem1.n N=logZlogK2
18 12 simpld φX+
19 18 rpred φX
20 1red φ1
21 11 simpld φY+
22 21 rpred φY
23 11 simprd φ1Y
24 12 simprd φY<X
25 20 22 19 23 24 lelttrd φ1<X
26 19 25 rplogcld φlogX+
27 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
28 27 simp2d φK+
29 28 rpred φK
30 27 simp3d φE011<KUE+
31 30 simp2d φ1<K
32 29 31 rplogcld φlogK+
33 26 32 rpdivcld φlogXlogK+
34 33 rprege0d φlogXlogK0logXlogK
35 flge0nn0 logXlogK0logXlogKlogXlogK0
36 nn0p1nn logXlogK0logXlogK+1
37 34 35 36 3syl φlogXlogK+1
38 16 37 eqeltrid φM
39 38 nnzd φM
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pntlemb φZ+1<ZeZZZY4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
41 40 simp1d φZ+
42 41 relogcld φlogZ
43 42 32 rerpdivcld φlogZlogK
44 43 rehalfcld φlogZlogK2
45 44 flcld φlogZlogK2
46 17 45 eqeltrid φN
47 0red φ0
48 4nn 4
49 nndivre logZlogK4logZlogK4
50 43 48 49 sylancl φlogZlogK4
51 46 zred φN
52 38 nnred φM
53 51 52 resubcld φNM
54 41 rpred φZ
55 40 simp2d φ1<ZeZZZY
56 55 simp1d φ1<Z
57 54 56 rplogcld φlogZ+
58 57 32 rpdivcld φlogZlogK+
59 4re 4
60 4pos 0<4
61 59 60 elrpii 4+
62 rpdivcl logZlogK+4+logZlogK4+
63 58 61 62 sylancl φlogZlogK4+
64 63 rpge0d φ0logZlogK4
65 50 recnd φlogZlogK4
66 38 nncnd φM
67 1cnd φ1
68 65 66 67 addassd φlogZlogK4+M+1=logZlogK4+M+1
69 52 20 readdcld φM+1
70 50 69 readdcld φlogZlogK4+M+1
71 peano2re NN+1
72 51 71 syl φN+1
73 33 rpred φlogXlogK
74 2re 2
75 74 a1i φ2
76 73 75 readdcld φlogXlogK+2
77 reflcl logXlogKlogXlogK
78 73 77 syl φlogXlogK
79 78 recnd φlogXlogK
80 79 67 67 addassd φlogXlogK+1+1=logXlogK+1+1
81 16 oveq1i M+1=logXlogK+1+1
82 df-2 2=1+1
83 82 oveq2i logXlogK+2=logXlogK+1+1
84 80 81 83 3eqtr4g φM+1=logXlogK+2
85 flle logXlogKlogXlogKlogXlogK
86 73 85 syl φlogXlogKlogXlogK
87 78 73 75 86 leadd1dd φlogXlogK+2logXlogK+2
88 84 87 eqbrtrd φM+1logXlogK+2
89 40 simp3d φ4LEZlogXlogK+2logZlogK4U3+CUELE232BlogZ
90 89 simp2d φlogXlogK+2logZlogK4
91 69 76 50 88 90 letrd φM+1logZlogK4
92 69 50 50 91 leadd2dd φlogZlogK4+M+1logZlogK4+logZlogK4
93 43 recnd φlogZlogK
94 2cnd φ2
95 2ne0 20
96 95 a1i φ20
97 93 94 94 96 96 divdiv1d φlogZlogK22=logZlogK22
98 2t2e4 22=4
99 98 oveq2i logZlogK22=logZlogK4
100 97 99 eqtrdi φlogZlogK22=logZlogK4
101 100 oveq2d φ2logZlogK22=2logZlogK4
102 44 recnd φlogZlogK2
103 102 94 96 divcan2d φ2logZlogK22=logZlogK2
104 65 2timesd φ2logZlogK4=logZlogK4+logZlogK4
105 101 103 104 3eqtr3d φlogZlogK2=logZlogK4+logZlogK4
106 92 105 breqtrrd φlogZlogK4+M+1logZlogK2
107 fllep1 logZlogK2logZlogK2logZlogK2+1
108 44 107 syl φlogZlogK2logZlogK2+1
109 17 oveq1i N+1=logZlogK2+1
110 108 109 breqtrrdi φlogZlogK2N+1
111 70 44 72 106 110 letrd φlogZlogK4+M+1N+1
112 68 111 eqbrtrd φlogZlogK4+M+1N+1
113 50 52 readdcld φlogZlogK4+M
114 113 51 20 leadd1d φlogZlogK4+MNlogZlogK4+M+1N+1
115 112 114 mpbird φlogZlogK4+MN
116 leaddsub logZlogK4MNlogZlogK4+MNlogZlogK4NM
117 50 52 51 116 syl3anc φlogZlogK4+MNlogZlogK4NM
118 115 117 mpbid φlogZlogK4NM
119 47 50 53 64 118 letrd φ0NM
120 51 52 subge0d φ0NMMN
121 119 120 mpbid φMN
122 eluz2 NMMNMN
123 39 46 121 122 syl3anbrc φNM
124 38 123 118 3jca φMNMlogZlogK4NM