Metamath Proof Explorer


Theorem poimirlem5

Description: Lemma for poimir to establish that, for the simplices defined by a walk along the edges of an N -cube, if the starting vertex is not opposite a given face, it is the earliest vertex of the face on the walk. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem9.1 φTS
poimirlem5.2 φ0<2ndT
Assertion poimirlem5 φF0=1st1stT

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem9.1 φTS
4 poimirlem5.2 φ0<2ndT
5 fveq2 t=T2ndt=2ndT
6 5 breq2d t=Ty<2ndty<2ndT
7 6 ifbid t=Tify<2ndtyy+1=ify<2ndTyy+1
8 7 csbeq1d t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
9 2fveq3 t=T1st1stt=1st1stT
10 2fveq3 t=T2nd1stt=2nd1stT
11 10 imaeq1d t=T2nd1stt1j=2nd1stT1j
12 11 xpeq1d t=T2nd1stt1j×1=2nd1stT1j×1
13 10 imaeq1d t=T2nd1sttj+1N=2nd1stTj+1N
14 13 xpeq1d t=T2nd1sttj+1N×0=2nd1stTj+1N×0
15 12 14 uneq12d t=T2nd1stt1j×12nd1sttj+1N×0=2nd1stT1j×12nd1stTj+1N×0
16 9 15 oveq12d t=T1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT1j×12nd1stTj+1N×0
17 16 csbeq2dv t=Tify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
18 8 17 eqtrd t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
19 18 mpteq2dv t=Ty0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
20 19 eqeq2d t=TF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
21 20 2 elrab2 TST0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
22 21 simprbi TSF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
23 3 22 syl φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
24 breq1 y=0y<2ndT0<2ndT
25 id y=0y=0
26 24 25 ifbieq1d y=0ify<2ndTyy+1=if0<2ndT0y+1
27 4 iftrued φif0<2ndT0y+1=0
28 26 27 sylan9eqr φy=0ify<2ndTyy+1=0
29 28 csbeq1d φy=0ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=0/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
30 c0ex 0V
31 oveq2 j=01j=10
32 fz10 10=
33 31 32 eqtrdi j=01j=
34 33 imaeq2d j=02nd1stT1j=2nd1stT
35 34 xpeq1d j=02nd1stT1j×1=2nd1stT×1
36 oveq1 j=0j+1=0+1
37 0p1e1 0+1=1
38 36 37 eqtrdi j=0j+1=1
39 38 oveq1d j=0j+1N=1N
40 39 imaeq2d j=02nd1stTj+1N=2nd1stT1N
41 40 xpeq1d j=02nd1stTj+1N×0=2nd1stT1N×0
42 35 41 uneq12d j=02nd1stT1j×12nd1stTj+1N×0=2nd1stT×12nd1stT1N×0
43 ima0 2nd1stT=
44 43 xpeq1i 2nd1stT×1=×1
45 0xp ×1=
46 44 45 eqtri 2nd1stT×1=
47 46 uneq1i 2nd1stT×12nd1stT1N×0=2nd1stT1N×0
48 uncom 2nd1stT1N×0=2nd1stT1N×0
49 un0 2nd1stT1N×0=2nd1stT1N×0
50 47 48 49 3eqtri 2nd1stT×12nd1stT1N×0=2nd1stT1N×0
51 42 50 eqtrdi j=02nd1stT1j×12nd1stTj+1N×0=2nd1stT1N×0
52 51 oveq2d j=01st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1N×0
53 30 52 csbie 0/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f2nd1stT1N×0
54 elrabi Tt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0T0..^K1N×f|f:1N1-1 onto1N×0N
55 54 2 eleq2s TST0..^K1N×f|f:1N1-1 onto1N×0N
56 3 55 syl φT0..^K1N×f|f:1N1-1 onto1N×0N
57 xp1st T0..^K1N×f|f:1N1-1 onto1N×0N1stT0..^K1N×f|f:1N1-1 onto1N
58 56 57 syl φ1stT0..^K1N×f|f:1N1-1 onto1N
59 xp2nd 1stT0..^K1N×f|f:1N1-1 onto1N2nd1stTf|f:1N1-1 onto1N
60 58 59 syl φ2nd1stTf|f:1N1-1 onto1N
61 fvex 2nd1stTV
62 f1oeq1 f=2nd1stTf:1N1-1 onto1N2nd1stT:1N1-1 onto1N
63 61 62 elab 2nd1stTf|f:1N1-1 onto1N2nd1stT:1N1-1 onto1N
64 60 63 sylib φ2nd1stT:1N1-1 onto1N
65 f1ofo 2nd1stT:1N1-1 onto1N2nd1stT:1Nonto1N
66 64 65 syl φ2nd1stT:1Nonto1N
67 foima 2nd1stT:1Nonto1N2nd1stT1N=1N
68 66 67 syl φ2nd1stT1N=1N
69 68 xpeq1d φ2nd1stT1N×0=1N×0
70 69 oveq2d φ1st1stT+f2nd1stT1N×0=1st1stT+f1N×0
71 53 70 eqtrid φ0/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×0
72 71 adantr φy=00/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×0
73 29 72 eqtrd φy=0ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0=1st1stT+f1N×0
74 nnm1nn0 NN10
75 1 74 syl φN10
76 0elfz N1000N1
77 75 76 syl φ00N1
78 ovexd φ1st1stT+f1N×0V
79 23 73 77 78 fvmptd φF0=1st1stT+f1N×0
80 ovexd φ1NV
81 xp1st 1stT0..^K1N×f|f:1N1-1 onto1N1st1stT0..^K1N
82 58 81 syl φ1st1stT0..^K1N
83 elmapfn 1st1stT0..^K1N1st1stTFn1N
84 82 83 syl φ1st1stTFn1N
85 fnconstg 0V1N×0Fn1N
86 30 85 mp1i φ1N×0Fn1N
87 eqidd φn1N1st1stTn=1st1stTn
88 30 fvconst2 n1N1N×0n=0
89 88 adantl φn1N1N×0n=0
90 elmapi 1st1stT0..^K1N1st1stT:1N0..^K
91 82 90 syl φ1st1stT:1N0..^K
92 91 ffvelcdmda φn1N1st1stTn0..^K
93 elfzonn0 1st1stTn0..^K1st1stTn0
94 92 93 syl φn1N1st1stTn0
95 94 nn0cnd φn1N1st1stTn
96 95 addridd φn1N1st1stTn+0=1st1stTn
97 80 84 86 84 87 89 96 offveq φ1st1stT+f1N×0=1st1stT
98 79 97 eqtrd φF0=1st1stT