Metamath Proof Explorer


Theorem psrcom

Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psrass.d D=f0I|f-1Fin
psrass.t ×˙=S
psrass.b B=BaseS
psrass.x φXB
psrass.y φYB
psrcom.c φRCRing
Assertion psrcom φX×˙Y=Y×˙X

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psrass.d D=f0I|f-1Fin
5 psrass.t ×˙=S
6 psrass.b B=BaseS
7 psrass.x φXB
8 psrass.y φYB
9 psrcom.c φRCRing
10 eqid BaseR=BaseR
11 eqid 0R=0R
12 ringcmn RRingRCMnd
13 3 12 syl φRCMnd
14 13 adantr φxDRCMnd
15 4 psrbaglefi xDgD|gfxFin
16 15 adantl φxDgD|gfxFin
17 3 ad2antrr φxDkgD|gfxRRing
18 1 10 4 6 7 psrelbas φX:DBaseR
19 18 ad2antrr φxDkgD|gfxX:DBaseR
20 simpr φxDkgD|gfxkgD|gfx
21 breq1 g=kgfxkfx
22 21 elrab kgD|gfxkDkfx
23 20 22 sylib φxDkgD|gfxkDkfx
24 23 simpld φxDkgD|gfxkD
25 19 24 ffvelcdmd φxDkgD|gfxXkBaseR
26 1 10 4 6 8 psrelbas φY:DBaseR
27 26 ad2antrr φxDkgD|gfxY:DBaseR
28 simplr φxDkgD|gfxxD
29 4 psrbagf kDk:I0
30 24 29 syl φxDkgD|gfxk:I0
31 23 simprd φxDkgD|gfxkfx
32 4 psrbagcon xDk:I0kfxxfkDxfkfx
33 28 30 31 32 syl3anc φxDkgD|gfxxfkDxfkfx
34 33 simpld φxDkgD|gfxxfkD
35 27 34 ffvelcdmd φxDkgD|gfxYxfkBaseR
36 eqid R=R
37 10 36 ringcl RRingXkBaseRYxfkBaseRXkRYxfkBaseR
38 17 25 35 37 syl3anc φxDkgD|gfxXkRYxfkBaseR
39 38 fmpttd φxDkgD|gfxXkRYxfk:gD|gfxBaseR
40 ovex 0IV
41 4 40 rabex2 DV
42 41 a1i φxDDV
43 rabexg DVgD|gfxV
44 42 43 syl φxDgD|gfxV
45 44 mptexd φxDkgD|gfxXkRYxfkV
46 funmpt FunkgD|gfxXkRYxfk
47 46 a1i φxDFunkgD|gfxXkRYxfk
48 fvexd φxD0RV
49 suppssdm kgD|gfxXkRYxfksupp0RdomkgD|gfxXkRYxfk
50 eqid kgD|gfxXkRYxfk=kgD|gfxXkRYxfk
51 50 dmmptss domkgD|gfxXkRYxfkgD|gfx
52 49 51 sstri kgD|gfxXkRYxfksupp0RgD|gfx
53 52 a1i φxDkgD|gfxXkRYxfksupp0RgD|gfx
54 suppssfifsupp kgD|gfxXkRYxfkVFunkgD|gfxXkRYxfk0RVgD|gfxFinkgD|gfxXkRYxfksupp0RgD|gfxfinSupp0RkgD|gfxXkRYxfk
55 45 47 48 16 53 54 syl32anc φxDfinSupp0RkgD|gfxXkRYxfk
56 eqid gD|gfx=gD|gfx
57 4 56 psrbagconf1o xDjgD|gfxxfj:gD|gfx1-1 ontogD|gfx
58 57 adantl φxDjgD|gfxxfj:gD|gfx1-1 ontogD|gfx
59 10 11 14 16 39 55 58 gsumf1o φxDRkgD|gfxXkRYxfk=RkgD|gfxXkRYxfkjgD|gfxxfj
60 simplr φxDjgD|gfxxD
61 simpr φxDjgD|gfxjgD|gfx
62 4 56 psrbagconcl xDjgD|gfxxfjgD|gfx
63 60 61 62 syl2anc φxDjgD|gfxxfjgD|gfx
64 eqidd φxDjgD|gfxxfj=jgD|gfxxfj
65 eqidd φxDkgD|gfxXkRYxfk=kgD|gfxXkRYxfk
66 fveq2 k=xfjXk=Xxfj
67 oveq2 k=xfjxfk=xfxfj
68 67 fveq2d k=xfjYxfk=Yxfxfj
69 66 68 oveq12d k=xfjXkRYxfk=XxfjRYxfxfj
70 63 64 65 69 fmptco φxDkgD|gfxXkRYxfkjgD|gfxxfj=jgD|gfxXxfjRYxfxfj
71 4 psrbagf xDx:I0
72 71 adantl φxDx:I0
73 72 adantr φxDjgD|gfxx:I0
74 73 ffvelcdmda φxDjgD|gfxzIxz0
75 breq1 g=jgfxjfx
76 75 elrab jgD|gfxjDjfx
77 61 76 sylib φxDjgD|gfxjDjfx
78 77 simpld φxDjgD|gfxjD
79 4 psrbagf jDj:I0
80 78 79 syl φxDjgD|gfxj:I0
81 80 ffvelcdmda φxDjgD|gfxzIjz0
82 nn0cn xz0xz
83 nn0cn jz0jz
84 nncan xzjzxzxzjz=jz
85 82 83 84 syl2an xz0jz0xzxzjz=jz
86 74 81 85 syl2anc φxDjgD|gfxzIxzxzjz=jz
87 86 mpteq2dva φxDjgD|gfxzIxzxzjz=zIjz
88 2 ad2antrr φxDjgD|gfxIV
89 ovex xzjzV
90 89 a1i φxDjgD|gfxzIxzjzV
91 73 feqmptd φxDjgD|gfxx=zIxz
92 80 feqmptd φxDjgD|gfxj=zIjz
93 88 74 81 91 92 offval2 φxDjgD|gfxxfj=zIxzjz
94 88 74 90 91 93 offval2 φxDjgD|gfxxfxfj=zIxzxzjz
95 87 94 92 3eqtr4d φxDjgD|gfxxfxfj=j
96 95 fveq2d φxDjgD|gfxYxfxfj=Yj
97 96 oveq2d φxDjgD|gfxXxfjRYxfxfj=XxfjRYj
98 9 ad2antrr φxDjgD|gfxRCRing
99 18 ad2antrr φxDjgD|gfxX:DBaseR
100 77 simprd φxDjgD|gfxjfx
101 4 psrbagcon xDj:I0jfxxfjDxfjfx
102 60 80 100 101 syl3anc φxDjgD|gfxxfjDxfjfx
103 102 simpld φxDjgD|gfxxfjD
104 99 103 ffvelcdmd φxDjgD|gfxXxfjBaseR
105 26 ad2antrr φxDjgD|gfxY:DBaseR
106 105 78 ffvelcdmd φxDjgD|gfxYjBaseR
107 10 36 crngcom RCRingXxfjBaseRYjBaseRXxfjRYj=YjRXxfj
108 98 104 106 107 syl3anc φxDjgD|gfxXxfjRYj=YjRXxfj
109 97 108 eqtrd φxDjgD|gfxXxfjRYxfxfj=YjRXxfj
110 109 mpteq2dva φxDjgD|gfxXxfjRYxfxfj=jgD|gfxYjRXxfj
111 70 110 eqtrd φxDkgD|gfxXkRYxfkjgD|gfxxfj=jgD|gfxYjRXxfj
112 111 oveq2d φxDRkgD|gfxXkRYxfkjgD|gfxxfj=RjgD|gfxYjRXxfj
113 59 112 eqtrd φxDRkgD|gfxXkRYxfk=RjgD|gfxYjRXxfj
114 113 mpteq2dva φxDRkgD|gfxXkRYxfk=xDRjgD|gfxYjRXxfj
115 1 6 36 5 4 7 8 psrmulfval φX×˙Y=xDRkgD|gfxXkRYxfk
116 1 6 36 5 4 8 7 psrmulfval φY×˙X=xDRjgD|gfxYjRXxfj
117 114 115 116 3eqtr4d φX×˙Y=Y×˙X