Metamath Proof Explorer


Theorem ptrescn

Description: Restriction is a continuous function on product topologies. (Contributed by Mario Carneiro, 7-Feb-2015)

Ref Expression
Hypotheses ptrescn.1 X=J
ptrescn.2 J=𝑡F
ptrescn.3 K=𝑡FB
Assertion ptrescn AVF:ATopBAxXxBJCnK

Proof

Step Hyp Ref Expression
1 ptrescn.1 X=J
2 ptrescn.2 J=𝑡F
3 ptrescn.3 K=𝑡FB
4 simpl3 AVF:ATopBAxXBA
5 2 ptuni AVF:ATopkAFk=J
6 5 3adant3 AVF:ATopBAkAFk=J
7 6 1 eqtr4di AVF:ATopBAkAFk=X
8 7 eleq2d AVF:ATopBAxkAFkxX
9 8 biimpar AVF:ATopBAxXxkAFk
10 resixp BAxkAFkxBkBFk
11 4 9 10 syl2anc AVF:ATopBAxXxBkBFk
12 ixpeq2 kBFBk=FkkBFBk=kBFk
13 fvres kBFBk=Fk
14 13 unieqd kBFBk=Fk
15 12 14 mprg kBFBk=kBFk
16 ssexg BAAVBV
17 16 ancoms AVBABV
18 17 3adant2 AVF:ATopBABV
19 fssres F:ATopBAFB:BTop
20 19 3adant1 AVF:ATopBAFB:BTop
21 3 ptuni BVFB:BTopkBFBk=K
22 18 20 21 syl2anc AVF:ATopBAkBFBk=K
23 15 22 eqtr3id AVF:ATopBAkBFk=K
24 23 adantr AVF:ATopBAxXkBFk=K
25 11 24 eleqtrd AVF:ATopBAxXxBK
26 25 fmpttd AVF:ATopBAxXxB:XK
27 fimacnv xXxB:XKxXxB-1K=X
28 26 27 syl AVF:ATopBAxXxB-1K=X
29 pttop AVF:ATop𝑡FTop
30 2 29 eqeltrid AVF:ATopJTop
31 30 3adant3 AVF:ATopBAJTop
32 1 topopn JTopXJ
33 31 32 syl AVF:ATopBAXJ
34 28 33 eqeltrd AVF:ATopBAxXxB-1KJ
35 elsni vKv=K
36 35 imaeq2d vKxXxB-1v=xXxB-1K
37 36 eleq1d vKxXxB-1vJxXxB-1KJ
38 34 37 syl5ibrcom AVF:ATopBAvKxXxB-1vJ
39 38 ralrimiv AVF:ATopBAvKxXxB-1vJ
40 imaco xXxB-1zKzk-1u=xXxB-1zKzk-1u
41 cnvco zKzkxXxB-1=xXxB-1zKzk-1
42 25 adantlr AVF:ATopBAkBuFkxXxBK
43 eqidd AVF:ATopBAkBuFkxXxB=xXxB
44 eqidd AVF:ATopBAkBuFkzKzk=zKzk
45 fveq1 z=xBzk=xBk
46 42 43 44 45 fmptco AVF:ATopBAkBuFkzKzkxXxB=xXxBk
47 fvres kBxBk=xk
48 47 ad2antrl AVF:ATopBAkBuFkxBk=xk
49 48 mpteq2dv AVF:ATopBAkBuFkxXxBk=xXxk
50 46 49 eqtrd AVF:ATopBAkBuFkzKzkxXxB=xXxk
51 50 cnveqd AVF:ATopBAkBuFkzKzkxXxB-1=xXxk-1
52 41 51 eqtr3id AVF:ATopBAkBuFkxXxB-1zKzk-1=xXxk-1
53 52 imaeq1d AVF:ATopBAkBuFkxXxB-1zKzk-1u=xXxk-1u
54 40 53 eqtr3id AVF:ATopBAkBuFkxXxB-1zKzk-1u=xXxk-1u
55 simpl1 AVF:ATopBAkBuFkAV
56 simpl2 AVF:ATopBAkBuFkF:ATop
57 simpl3 AVF:ATopBAkBuFkBA
58 simprl AVF:ATopBAkBuFkkB
59 57 58 sseldd AVF:ATopBAkBuFkkA
60 1 2 ptpjcn AVF:ATopkAxXxkJCnFk
61 55 56 59 60 syl3anc AVF:ATopBAkBuFkxXxkJCnFk
62 simprr AVF:ATopBAkBuFkuFk
63 cnima xXxkJCnFkuFkxXxk-1uJ
64 61 62 63 syl2anc AVF:ATopBAkBuFkxXxk-1uJ
65 54 64 eqeltrd AVF:ATopBAkBuFkxXxB-1zKzk-1uJ
66 imaeq2 v=zKzk-1uxXxB-1v=xXxB-1zKzk-1u
67 66 eleq1d v=zKzk-1uxXxB-1vJxXxB-1zKzk-1uJ
68 65 67 syl5ibrcom AVF:ATopBAkBuFkv=zKzk-1uxXxB-1vJ
69 68 rexlimdvva AVF:ATopBAkBuFkv=zKzk-1uxXxB-1vJ
70 69 alrimiv AVF:ATopBAvkBuFkv=zKzk-1uxXxB-1vJ
71 eqid kB,uFBkzKzk-1u=kB,uFBkzKzk-1u
72 71 rnmpo rankB,uFBkzKzk-1u=y|kBuFBky=zKzk-1u
73 72 raleqi vrankB,uFBkzKzk-1uxXxB-1vJvy|kBuFBky=zKzk-1uxXxB-1vJ
74 13 rexeqdv kBuFBky=zKzk-1uuFky=zKzk-1u
75 eqeq1 y=vy=zKzk-1uv=zKzk-1u
76 75 rexbidv y=vuFky=zKzk-1uuFkv=zKzk-1u
77 74 76 sylan9bbr y=vkBuFBky=zKzk-1uuFkv=zKzk-1u
78 77 rexbidva y=vkBuFBky=zKzk-1ukBuFkv=zKzk-1u
79 78 ralab vy|kBuFBky=zKzk-1uxXxB-1vJvkBuFkv=zKzk-1uxXxB-1vJ
80 73 79 bitri vrankB,uFBkzKzk-1uxXxB-1vJvkBuFkv=zKzk-1uxXxB-1vJ
81 70 80 sylibr AVF:ATopBAvrankB,uFBkzKzk-1uxXxB-1vJ
82 ralunb vKrankB,uFBkzKzk-1uxXxB-1vJvKxXxB-1vJvrankB,uFBkzKzk-1uxXxB-1vJ
83 39 81 82 sylanbrc AVF:ATopBAvKrankB,uFBkzKzk-1uxXxB-1vJ
84 1 toptopon JTopJTopOnX
85 31 84 sylib AVF:ATopBAJTopOnX
86 snex KV
87 fvex FBkV
88 87 abrexex y|uFBky=zKzk-1uV
89 88 rgenw kBy|uFBky=zKzk-1uV
90 abrexex2g BVkBy|uFBky=zKzk-1uVy|kBuFBky=zKzk-1uV
91 18 89 90 sylancl AVF:ATopBAy|kBuFBky=zKzk-1uV
92 72 91 eqeltrid AVF:ATopBArankB,uFBkzKzk-1uV
93 unexg KVrankB,uFBkzKzk-1uVKrankB,uFBkzKzk-1uV
94 86 92 93 sylancr AVF:ATopBAKrankB,uFBkzKzk-1uV
95 eqid K=K
96 3 95 71 ptval2 BVFB:BTopK=topGenfiKrankB,uFBkzKzk-1u
97 18 20 96 syl2anc AVF:ATopBAK=topGenfiKrankB,uFBkzKzk-1u
98 pttop BVFB:BTop𝑡FBTop
99 18 20 98 syl2anc AVF:ATopBA𝑡FBTop
100 3 99 eqeltrid AVF:ATopBAKTop
101 95 toptopon KTopKTopOnK
102 100 101 sylib AVF:ATopBAKTopOnK
103 85 94 97 102 subbascn AVF:ATopBAxXxBJCnKxXxB:XKvKrankB,uFBkzKzk-1uxXxB-1vJ
104 26 83 103 mpbir2and AVF:ATopBAxXxBJCnK