Metamath Proof Explorer


Theorem pw2f1olem

Description: Lemma for pw2f1o . (Contributed by Mario Carneiro, 6-Oct-2014)

Ref Expression
Hypotheses pw2f1o.1 φAV
pw2f1o.2 φBW
pw2f1o.3 φCW
pw2f1o.4 φBC
Assertion pw2f1olem φS𝒫AG=zAifzSCBGBCAS=G-1C

Proof

Step Hyp Ref Expression
1 pw2f1o.1 φAV
2 pw2f1o.2 φBW
3 pw2f1o.3 φCW
4 pw2f1o.4 φBC
5 prid2g CWCBC
6 3 5 syl φCBC
7 prid1g BWBBC
8 2 7 syl φBBC
9 6 8 ifcld φifySCBBC
10 9 adantr φyAifySCBBC
11 10 fmpttd φyAifySCB:ABC
12 11 adantr φSAG=yAifySCByAifySCB:ABC
13 simprr φSAG=yAifySCBG=yAifySCB
14 13 feq1d φSAG=yAifySCBG:ABCyAifySCB:ABC
15 12 14 mpbird φSAG=yAifySCBG:ABC
16 iftrue xSifxSCB=C
17 4 ad2antrr φSAG=yAifySCBxABC
18 iffalse ¬xSifxSCB=B
19 18 neeq1d ¬xSifxSCBCBC
20 17 19 syl5ibrcom φSAG=yAifySCBxA¬xSifxSCBC
21 20 necon4bd φSAG=yAifySCBxAifxSCB=CxS
22 16 21 impbid2 φSAG=yAifySCBxAxSifxSCB=C
23 simplrr φSAG=yAifySCBxAG=yAifySCB
24 23 fveq1d φSAG=yAifySCBxAGx=yAifySCBx
25 id xAxA
26 6 8 ifcld φifxSCBBC
27 26 adantr φSAG=yAifySCBifxSCBBC
28 eleq1w y=xySxS
29 28 ifbid y=xifySCB=ifxSCB
30 eqid yAifySCB=yAifySCB
31 29 30 fvmptg xAifxSCBBCyAifySCBx=ifxSCB
32 25 27 31 syl2anr φSAG=yAifySCBxAyAifySCBx=ifxSCB
33 24 32 eqtrd φSAG=yAifySCBxAGx=ifxSCB
34 33 eqeq1d φSAG=yAifySCBxAGx=CifxSCB=C
35 22 34 bitr4d φSAG=yAifySCBxAxSGx=C
36 35 pm5.32da φSAG=yAifySCBxAxSxAGx=C
37 simprl φSAG=yAifySCBSA
38 37 sseld φSAG=yAifySCBxSxA
39 38 pm4.71rd φSAG=yAifySCBxSxAxS
40 ffn G:ABCGFnA
41 15 40 syl φSAG=yAifySCBGFnA
42 fniniseg GFnAxG-1CxAGx=C
43 41 42 syl φSAG=yAifySCBxG-1CxAGx=C
44 36 39 43 3bitr4d φSAG=yAifySCBxSxG-1C
45 44 eqrdv φSAG=yAifySCBS=G-1C
46 15 45 jca φSAG=yAifySCBG:ABCS=G-1C
47 simprr φG:ABCS=G-1CS=G-1C
48 cnvimass G-1CdomG
49 fdm G:ABCdomG=A
50 49 ad2antrl φG:ABCS=G-1CdomG=A
51 48 50 sseqtrid φG:ABCS=G-1CG-1CA
52 47 51 eqsstrd φG:ABCS=G-1CSA
53 40 ad2antrl φG:ABCS=G-1CGFnA
54 dffn5 GFnAG=yAGy
55 53 54 sylib φG:ABCS=G-1CG=yAGy
56 simplrr φG:ABCS=G-1CyAS=G-1C
57 56 eleq2d φG:ABCS=G-1CyAySyG-1C
58 fniniseg GFnAyG-1CyAGy=C
59 53 58 syl φG:ABCS=G-1CyG-1CyAGy=C
60 59 baibd φG:ABCS=G-1CyAyG-1CGy=C
61 57 60 bitrd φG:ABCS=G-1CyAySGy=C
62 61 biimpa φG:ABCS=G-1CyAySGy=C
63 iftrue ySifySCB=C
64 63 adantl φG:ABCS=G-1CyAySifySCB=C
65 62 64 eqtr4d φG:ABCS=G-1CyAySGy=ifySCB
66 simprl φG:ABCS=G-1CG:ABC
67 66 ffvelcdmda φG:ABCS=G-1CyAGyBC
68 fvex GyV
69 68 elpr GyBCGy=BGy=C
70 67 69 sylib φG:ABCS=G-1CyAGy=BGy=C
71 70 ord φG:ABCS=G-1CyA¬Gy=BGy=C
72 71 61 sylibrd φG:ABCS=G-1CyA¬Gy=ByS
73 72 con1d φG:ABCS=G-1CyA¬ySGy=B
74 73 imp φG:ABCS=G-1CyA¬ySGy=B
75 iffalse ¬ySifySCB=B
76 75 adantl φG:ABCS=G-1CyA¬ySifySCB=B
77 74 76 eqtr4d φG:ABCS=G-1CyA¬ySGy=ifySCB
78 65 77 pm2.61dan φG:ABCS=G-1CyAGy=ifySCB
79 78 mpteq2dva φG:ABCS=G-1CyAGy=yAifySCB
80 55 79 eqtrd φG:ABCS=G-1CG=yAifySCB
81 52 80 jca φG:ABCS=G-1CSAG=yAifySCB
82 46 81 impbida φSAG=yAifySCBG:ABCS=G-1C
83 elpw2g AVS𝒫ASA
84 1 83 syl φS𝒫ASA
85 eleq1w z=yzSyS
86 85 ifbid z=yifzSCB=ifySCB
87 86 cbvmptv zAifzSCB=yAifySCB
88 87 a1i φzAifzSCB=yAifySCB
89 88 eqeq2d φG=zAifzSCBG=yAifySCB
90 84 89 anbi12d φS𝒫AG=zAifzSCBSAG=yAifySCB
91 prex BCV
92 elmapg BCVAVGBCAG:ABC
93 91 1 92 sylancr φGBCAG:ABC
94 93 anbi1d φGBCAS=G-1CG:ABCS=G-1C
95 82 90 94 3bitr4d φS𝒫AG=zAifzSCBGBCAS=G-1C