Metamath Proof Explorer


Theorem qtopeu

Description: Universal property of the quotient topology. If G is a function from J to K which is equal on all equivalent elements under F , then there is a unique continuous map f : ( J / F ) --> K such that G = f o. F , and we say that G "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses qtopeu.1 φJTopOnX
qtopeu.3 φF:XontoY
qtopeu.4 φGJCnK
qtopeu.5 φxXyXFx=FyGx=Gy
Assertion qtopeu φ∃!fJqTopFCnKG=fF

Proof

Step Hyp Ref Expression
1 qtopeu.1 φJTopOnX
2 qtopeu.3 φF:XontoY
3 qtopeu.4 φGJCnK
4 qtopeu.5 φxXyXFx=FyGx=Gy
5 fofn F:XontoYFFnX
6 2 5 syl φFFnX
7 6 adantr φxXFFnX
8 fniniseg FFnXyF-1FxyXFy=Fx
9 7 8 syl φxXyF-1FxyXFy=Fx
10 eqcom Fx=FyFy=Fx
11 10 3anbi3i xXyXFx=FyxXyXFy=Fx
12 3anass xXyXFy=FxxXyXFy=Fx
13 11 12 bitri xXyXFx=FyxXyXFy=Fx
14 13 4 sylan2br φxXyXFy=FxGx=Gy
15 14 eqcomd φxXyXFy=FxGy=Gx
16 15 expr φxXyXFy=FxGy=Gx
17 9 16 sylbid φxXyF-1FxGy=Gx
18 17 ralrimiv φxXyF-1FxGy=Gx
19 cntop2 GJCnKKTop
20 3 19 syl φKTop
21 toptopon2 KTopKTopOnK
22 20 21 sylib φKTopOnK
23 cnf2 JTopOnXKTopOnKGJCnKG:XK
24 1 22 3 23 syl3anc φG:XK
25 24 ffnd φGFnX
26 25 adantr φxXGFnX
27 cnvimass F-1FxdomF
28 fof F:XontoYF:XY
29 2 28 syl φF:XY
30 29 fdmd φdomF=X
31 30 adantr φxXdomF=X
32 27 31 sseqtrid φxXF-1FxX
33 eqeq1 w=Gyw=GxGy=Gx
34 33 ralima GFnXF-1FxXwGF-1Fxw=GxyF-1FxGy=Gx
35 26 32 34 syl2anc φxXwGF-1Fxw=GxyF-1FxGy=Gx
36 18 35 mpbird φxXwGF-1Fxw=Gx
37 24 fdmd φdomG=X
38 37 eleq2d φxdomGxX
39 38 biimpar φxXxdomG
40 simpr φxXxX
41 eqidd φxXFx=Fx
42 fniniseg FFnXxF-1FxxXFx=Fx
43 7 42 syl φxXxF-1FxxXFx=Fx
44 40 41 43 mpbir2and φxXxF-1Fx
45 inelcm xdomGxF-1FxdomGF-1Fx
46 39 44 45 syl2anc φxXdomGF-1Fx
47 imadisj GF-1Fx=domGF-1Fx=
48 47 necon3bii GF-1FxdomGF-1Fx
49 46 48 sylibr φxXGF-1Fx
50 eqsn GF-1FxGF-1Fx=GxwGF-1Fxw=Gx
51 49 50 syl φxXGF-1Fx=GxwGF-1Fxw=Gx
52 36 51 mpbird φxXGF-1Fx=Gx
53 52 unieqd φxXGF-1Fx=Gx
54 fvex GxV
55 54 unisn Gx=Gx
56 53 55 eqtr2di φxXGx=GF-1Fx
57 56 mpteq2dva φxXGx=xXGF-1Fx
58 24 feqmptd φG=xXGx
59 29 ffvelcdmda φxXFxY
60 29 feqmptd φF=xXFx
61 eqidd φwYGF-1w=wYGF-1w
62 sneq w=Fxw=Fx
63 62 imaeq2d w=FxF-1w=F-1Fx
64 63 imaeq2d w=FxGF-1w=GF-1Fx
65 64 unieqd w=FxGF-1w=GF-1Fx
66 59 60 61 65 fmptco φwYGF-1wF=xXGF-1Fx
67 57 58 66 3eqtr4d φG=wYGF-1wF
68 67 3 eqeltrrd φwYGF-1wFJCnK
69 24 ffvelcdmda φxXGxK
70 56 69 eqeltrrd φxXGF-1FxK
71 70 ralrimiva φxXGF-1FxK
72 65 eqcomd w=FxGF-1Fx=GF-1w
73 72 eqcoms Fx=wGF-1Fx=GF-1w
74 73 eleq1d Fx=wGF-1FxKGF-1wK
75 74 cbvfo F:XontoYxXGF-1FxKwYGF-1wK
76 2 75 syl φxXGF-1FxKwYGF-1wK
77 71 76 mpbid φwYGF-1wK
78 eqid wYGF-1w=wYGF-1w
79 78 fmpt wYGF-1wKwYGF-1w:YK
80 77 79 sylib φwYGF-1w:YK
81 qtopcn JTopOnXKTopOnKF:XontoYwYGF-1w:YKwYGF-1wJqTopFCnKwYGF-1wFJCnK
82 1 22 2 80 81 syl22anc φwYGF-1wJqTopFCnKwYGF-1wFJCnK
83 68 82 mpbird φwYGF-1wJqTopFCnK
84 coeq1 f=wYGF-1wfF=wYGF-1wF
85 84 rspceeqv wYGF-1wJqTopFCnKG=wYGF-1wFfJqTopFCnKG=fF
86 83 67 85 syl2anc φfJqTopFCnKG=fF
87 eqtr2 G=fFG=gFfF=gF
88 2 adantr φfJqTopFCnKgJqTopFCnKF:XontoY
89 qtoptopon JTopOnXF:XontoYJqTopFTopOnY
90 1 2 89 syl2anc φJqTopFTopOnY
91 90 adantr φfJqTopFCnKgJqTopFCnKJqTopFTopOnY
92 22 adantr φfJqTopFCnKgJqTopFCnKKTopOnK
93 simprl φfJqTopFCnKgJqTopFCnKfJqTopFCnK
94 cnf2 JqTopFTopOnYKTopOnKfJqTopFCnKf:YK
95 91 92 93 94 syl3anc φfJqTopFCnKgJqTopFCnKf:YK
96 95 ffnd φfJqTopFCnKgJqTopFCnKfFnY
97 simprr φfJqTopFCnKgJqTopFCnKgJqTopFCnK
98 cnf2 JqTopFTopOnYKTopOnKgJqTopFCnKg:YK
99 91 92 97 98 syl3anc φfJqTopFCnKgJqTopFCnKg:YK
100 99 ffnd φfJqTopFCnKgJqTopFCnKgFnY
101 cocan2 F:XontoYfFnYgFnYfF=gFf=g
102 88 96 100 101 syl3anc φfJqTopFCnKgJqTopFCnKfF=gFf=g
103 87 102 imbitrid φfJqTopFCnKgJqTopFCnKG=fFG=gFf=g
104 103 ralrimivva φfJqTopFCnKgJqTopFCnKG=fFG=gFf=g
105 coeq1 f=gfF=gF
106 105 eqeq2d f=gG=fFG=gF
107 106 reu4 ∃!fJqTopFCnKG=fFfJqTopFCnKG=fFfJqTopFCnKgJqTopFCnKG=fFG=gFf=g
108 86 104 107 sylanbrc φ∃!fJqTopFCnKG=fF