| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopeu.1 |
|
| 2 |
|
qtopeu.3 |
|
| 3 |
|
qtopeu.4 |
|
| 4 |
|
qtopeu.5 |
|
| 5 |
|
fofn |
|
| 6 |
2 5
|
syl |
|
| 7 |
6
|
adantr |
|
| 8 |
|
fniniseg |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
eqcom |
|
| 11 |
10
|
3anbi3i |
|
| 12 |
|
3anass |
|
| 13 |
11 12
|
bitri |
|
| 14 |
13 4
|
sylan2br |
|
| 15 |
14
|
eqcomd |
|
| 16 |
15
|
expr |
|
| 17 |
9 16
|
sylbid |
|
| 18 |
17
|
ralrimiv |
|
| 19 |
|
cntop2 |
|
| 20 |
3 19
|
syl |
|
| 21 |
|
toptopon2 |
|
| 22 |
20 21
|
sylib |
|
| 23 |
|
cnf2 |
|
| 24 |
1 22 3 23
|
syl3anc |
|
| 25 |
24
|
ffnd |
|
| 26 |
25
|
adantr |
|
| 27 |
|
cnvimass |
|
| 28 |
|
fof |
|
| 29 |
2 28
|
syl |
|
| 30 |
29
|
fdmd |
|
| 31 |
30
|
adantr |
|
| 32 |
27 31
|
sseqtrid |
|
| 33 |
|
eqeq1 |
|
| 34 |
33
|
ralima |
|
| 35 |
26 32 34
|
syl2anc |
|
| 36 |
18 35
|
mpbird |
|
| 37 |
24
|
fdmd |
|
| 38 |
37
|
eleq2d |
|
| 39 |
38
|
biimpar |
|
| 40 |
|
simpr |
|
| 41 |
|
eqidd |
|
| 42 |
|
fniniseg |
|
| 43 |
7 42
|
syl |
|
| 44 |
40 41 43
|
mpbir2and |
|
| 45 |
|
inelcm |
|
| 46 |
39 44 45
|
syl2anc |
|
| 47 |
|
imadisj |
|
| 48 |
47
|
necon3bii |
|
| 49 |
46 48
|
sylibr |
|
| 50 |
|
eqsn |
|
| 51 |
49 50
|
syl |
|
| 52 |
36 51
|
mpbird |
|
| 53 |
52
|
unieqd |
|
| 54 |
|
fvex |
|
| 55 |
54
|
unisn |
|
| 56 |
53 55
|
eqtr2di |
|
| 57 |
56
|
mpteq2dva |
|
| 58 |
24
|
feqmptd |
|
| 59 |
29
|
ffvelcdmda |
|
| 60 |
29
|
feqmptd |
|
| 61 |
|
eqidd |
|
| 62 |
|
sneq |
|
| 63 |
62
|
imaeq2d |
|
| 64 |
63
|
imaeq2d |
|
| 65 |
64
|
unieqd |
|
| 66 |
59 60 61 65
|
fmptco |
|
| 67 |
57 58 66
|
3eqtr4d |
|
| 68 |
67 3
|
eqeltrrd |
|
| 69 |
24
|
ffvelcdmda |
|
| 70 |
56 69
|
eqeltrrd |
|
| 71 |
70
|
ralrimiva |
|
| 72 |
65
|
eqcomd |
|
| 73 |
72
|
eqcoms |
|
| 74 |
73
|
eleq1d |
|
| 75 |
74
|
cbvfo |
|
| 76 |
2 75
|
syl |
|
| 77 |
71 76
|
mpbid |
|
| 78 |
|
eqid |
|
| 79 |
78
|
fmpt |
|
| 80 |
77 79
|
sylib |
|
| 81 |
|
qtopcn |
|
| 82 |
1 22 2 80 81
|
syl22anc |
|
| 83 |
68 82
|
mpbird |
|
| 84 |
|
coeq1 |
|
| 85 |
84
|
rspceeqv |
|
| 86 |
83 67 85
|
syl2anc |
|
| 87 |
|
eqtr2 |
|
| 88 |
2
|
adantr |
|
| 89 |
|
qtoptopon |
|
| 90 |
1 2 89
|
syl2anc |
|
| 91 |
90
|
adantr |
|
| 92 |
22
|
adantr |
|
| 93 |
|
simprl |
|
| 94 |
|
cnf2 |
|
| 95 |
91 92 93 94
|
syl3anc |
|
| 96 |
95
|
ffnd |
|
| 97 |
|
simprr |
|
| 98 |
|
cnf2 |
|
| 99 |
91 92 97 98
|
syl3anc |
|
| 100 |
99
|
ffnd |
|
| 101 |
|
cocan2 |
|
| 102 |
88 96 100 101
|
syl3anc |
|
| 103 |
87 102
|
imbitrid |
|
| 104 |
103
|
ralrimivva |
|
| 105 |
|
coeq1 |
|
| 106 |
105
|
eqeq2d |
|
| 107 |
106
|
reu4 |
|
| 108 |
86 104 107
|
sylanbrc |
|