Metamath Proof Explorer


Theorem refsum2cnlem1

Description: This is the core Lemma for refsum2cn : the sum of two continuous real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsum2cnlem1.1 _xA
refsum2cnlem1.2 _xF
refsum2cnlem1.3 _xG
refsum2cnlem1.4 xφ
refsum2cnlem1.5 A=k12ifk=1FG
refsum2cnlem1.6 K=topGenran.
refsum2cnlem1.7 φJTopOnX
refsum2cnlem1.8 φFJCnK
refsum2cnlem1.9 φGJCnK
Assertion refsum2cnlem1 φxXFx+GxJCnK

Proof

Step Hyp Ref Expression
1 refsum2cnlem1.1 _xA
2 refsum2cnlem1.2 _xF
3 refsum2cnlem1.3 _xG
4 refsum2cnlem1.4 xφ
5 refsum2cnlem1.5 A=k12ifk=1FG
6 refsum2cnlem1.6 K=topGenran.
7 refsum2cnlem1.7 φJTopOnX
8 refsum2cnlem1.8 φFJCnK
9 refsum2cnlem1.9 φGJCnK
10 nfmpt1 _kk12ifk=1FG
11 5 10 nfcxfr _kA
12 nfcv _k1
13 11 12 nffv _kA1
14 nfcv _kx
15 13 14 nffv _kA1x
16 15 a1i φxX_kA1x
17 nfcv _k2
18 11 17 nffv _kA2
19 18 14 nffv _kA2x
20 19 a1i φxX_kA2x
21 1cnd φxX1
22 2cnd φxX2
23 1ex 1V
24 23 prid1 112
25 8 9 ifcld φif1=1FGJCnK
26 eqeq1 k=1k=11=1
27 26 ifbid k=1ifk=1FG=if1=1FG
28 27 5 fvmptg 112if1=1FGJCnKA1=if1=1FG
29 24 25 28 sylancr φA1=if1=1FG
30 eqid 1=1
31 30 iftruei if1=1FG=F
32 29 31 eqtrdi φA1=F
33 32 adantr φxXA1=F
34 33 fveq1d φxXA1x=Fx
35 eqid J=J
36 eqid K=K
37 35 36 cnf FJCnKF:JK
38 8 37 syl φF:JK
39 toponuni JTopOnXX=J
40 7 39 syl φX=J
41 40 eqcomd φJ=X
42 6 unieqi K=topGenran.
43 uniretop =topGenran.
44 42 43 eqtr4i K=
45 44 a1i φK=
46 41 45 feq23d φF:JKF:X
47 38 46 mpbid φF:X
48 47 anim1i φxXF:XxX
49 ffvelcdm F:XxXFx
50 recn FxFx
51 48 49 50 3syl φxXFx
52 34 51 eqeltrd φxXA1x
53 2ex 2V
54 53 prid2 212
55 8 9 ifcld φif2=1FGJCnK
56 eqeq1 k=2k=12=1
57 56 ifbid k=2ifk=1FG=if2=1FG
58 57 5 fvmptg 212if2=1FGJCnKA2=if2=1FG
59 54 55 58 sylancr φA2=if2=1FG
60 1ne2 12
61 60 nesymi ¬2=1
62 61 iffalsei if2=1FG=G
63 59 62 eqtrdi φA2=G
64 63 adantr φxXA2=G
65 64 fveq1d φxXA2x=Gx
66 35 36 cnf GJCnKG:JK
67 9 66 syl φG:JK
68 41 45 feq23d φG:JKG:X
69 67 68 mpbid φG:X
70 69 anim1i φxXG:XxX
71 ffvelcdm G:XxXGx
72 recn GxGx
73 70 71 72 3syl φxXGx
74 65 73 eqeltrd φxXA2x
75 60 a1i φxX12
76 fveq2 k=1Ak=A1
77 76 fveq1d k=1Akx=A1x
78 77 adantl φxXk=1Akx=A1x
79 fveq2 k=2Ak=A2
80 79 fveq1d k=2Akx=A2x
81 80 adantl φxXk=2Akx=A2x
82 16 20 21 22 52 74 75 78 81 sumpair φxXk12Akx=A1x+A2x
83 34 65 oveq12d φxXA1x+A2x=Fx+Gx
84 82 83 eqtrd φxXk12Akx=Fx+Gx
85 4 84 mpteq2da φxXk12Akx=xXFx+Gx
86 prfi 12Fin
87 86 a1i φ12Fin
88 eqid X=X
89 88 ax-gen xX=X
90 nfcv _xk
91 1 90 nffv _xAk
92 91 2 nfeq xAk=F
93 fveq1 Ak=FAkx=Fx
94 93 a1d Ak=FxXAkx=Fx
95 92 94 ralrimi Ak=FxXAkx=Fx
96 mpteq12f xX=XxXAkx=FxxXAkx=xXFx
97 89 95 96 sylancr Ak=FxXAkx=xXFx
98 97 adantl φAk=FxXAkx=xXFx
99 retopon topGenran.TopOn
100 6 99 eqeltri KTopOn
101 100 a1i φKTopOn
102 cnf2 JTopOnXKTopOnFJCnKF:X
103 7 101 8 102 syl3anc φF:X
104 103 ffnd φFFnX
105 2 dffn5f FFnXF=xXFx
106 104 105 sylib φF=xXFx
107 106 adantr φAk=FF=xXFx
108 98 107 eqtr4d φAk=FxXAkx=F
109 8 adantr φAk=FFJCnK
110 108 109 eqeltrd φAk=FxXAkxJCnK
111 110 adantlr φk12Ak=FxXAkxJCnK
112 91 3 nfeq xAk=G
113 fveq1 Ak=GAkx=Gx
114 113 a1d Ak=GxXAkx=Gx
115 112 114 ralrimi Ak=GxXAkx=Gx
116 mpteq12f xX=XxXAkx=GxxXAkx=xXGx
117 89 115 116 sylancr Ak=GxXAkx=xXGx
118 117 adantl φAk=GxXAkx=xXGx
119 cnf2 JTopOnXKTopOnGJCnKG:X
120 7 101 9 119 syl3anc φG:X
121 120 ffnd φGFnX
122 3 dffn5f GFnXG=xXGx
123 121 122 sylib φG=xXGx
124 123 adantr φAk=GG=xXGx
125 118 124 eqtr4d φAk=GxXAkx=G
126 9 adantr φAk=GGJCnK
127 125 126 eqeltrd φAk=GxXAkxJCnK
128 127 adantlr φk12Ak=GxXAkxJCnK
129 simpr φk12k12
130 8 9 ifcld φifk=1FGJCnK
131 130 adantr φk12ifk=1FGJCnK
132 5 fvmpt2 k12ifk=1FGJCnKAk=ifk=1FG
133 129 131 132 syl2anc φk12Ak=ifk=1FG
134 iftrue k=1ifk=1FG=F
135 133 134 sylan9eq φk12k=1Ak=F
136 135 orcd φk12k=1Ak=FAk=G
137 133 adantr φk12k=2Ak=ifk=1FG
138 neeq2 k=21k12
139 60 138 mpbiri k=21k
140 139 necomd k=2k1
141 140 neneqd k=2¬k=1
142 141 adantl φk12k=2¬k=1
143 142 iffalsed φk12k=2ifk=1FG=G
144 137 143 eqtrd φk12k=2Ak=G
145 144 olcd φk12k=2Ak=FAk=G
146 elpri k12k=1k=2
147 146 adantl φk12k=1k=2
148 136 145 147 mpjaodan φk12Ak=FAk=G
149 111 128 148 mpjaodan φk12xXAkxJCnK
150 4 6 7 87 149 refsumcn φxXk12AkxJCnK
151 85 150 eqeltrrd φxXFx+GxJCnK