Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
satffunlem2lem1
Next ⟩
dmopab3rexdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
satffunlem2lem1
Description:
Lemma 1 for
satffunlem2
.
(Contributed by
AV
, 28-Oct-2023)
Ref
Expression
Hypotheses
satffunlem2lem1.s
⊢
S
=
M
Sat
E
satffunlem2lem1.a
ω
⊢
A
=
M
ω
∖
2
nd
u
∩
2
nd
v
satffunlem2lem1.b
ω
ω
⊢
B
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
Assertion
satffunlem2lem1
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
Fun
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
Proof
Step
Hyp
Ref
Expression
1
satffunlem2lem1.s
⊢
S
=
M
Sat
E
2
satffunlem2lem1.a
ω
⊢
A
=
M
ω
∖
2
nd
u
∩
2
nd
v
3
satffunlem2lem1.b
ω
ω
⊢
B
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
4
simpl
⊢
u
=
s
∧
v
=
r
→
u
=
s
5
4
fveq2d
⊢
u
=
s
∧
v
=
r
→
1
st
u
=
1
st
s
6
simpr
⊢
u
=
s
∧
v
=
r
→
v
=
r
7
6
fveq2d
⊢
u
=
s
∧
v
=
r
→
1
st
v
=
1
st
r
8
5
7
oveq12d
⊢
u
=
s
∧
v
=
r
→
1
st
u
⊼
𝑔
1
st
v
=
1
st
s
⊼
𝑔
1
st
r
9
8
eqeq2d
⊢
u
=
s
∧
v
=
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
↔
x
=
1
st
s
⊼
𝑔
1
st
r
10
4
fveq2d
⊢
u
=
s
∧
v
=
r
→
2
nd
u
=
2
nd
s
11
6
fveq2d
⊢
u
=
s
∧
v
=
r
→
2
nd
v
=
2
nd
r
12
10
11
ineq12d
⊢
u
=
s
∧
v
=
r
→
2
nd
u
∩
2
nd
v
=
2
nd
s
∩
2
nd
r
13
12
difeq2d
ω
ω
⊢
u
=
s
∧
v
=
r
→
M
ω
∖
2
nd
u
∩
2
nd
v
=
M
ω
∖
2
nd
s
∩
2
nd
r
14
2
13
eqtrid
ω
⊢
u
=
s
∧
v
=
r
→
A
=
M
ω
∖
2
nd
s
∩
2
nd
r
15
14
eqeq2d
ω
⊢
u
=
s
∧
v
=
r
→
y
=
A
↔
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
16
9
15
anbi12d
ω
⊢
u
=
s
∧
v
=
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
17
16
cbvrexdva
ω
⊢
u
=
s
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
18
simpr
⊢
u
=
s
∧
i
=
j
→
i
=
j
19
fveq2
⊢
u
=
s
→
1
st
u
=
1
st
s
20
19
adantr
⊢
u
=
s
∧
i
=
j
→
1
st
u
=
1
st
s
21
18
20
goaleq12d
⊢
u
=
s
∧
i
=
j
→
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
22
21
eqeq2d
⊢
u
=
s
∧
i
=
j
→
x
=
∀
𝑔
i
1
st
u
↔
x
=
∀
𝑔
j
1
st
s
23
3
eqeq2i
ω
ω
⊢
y
=
B
↔
y
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
24
opeq1
⊢
i
=
j
→
i
z
=
j
z
25
24
sneqd
⊢
i
=
j
→
i
z
=
j
z
26
sneq
⊢
i
=
j
→
i
=
j
27
26
difeq2d
ω
ω
⊢
i
=
j
→
ω
∖
i
=
ω
∖
j
28
27
reseq2d
ω
ω
⊢
i
=
j
→
a
↾
ω
∖
i
=
a
↾
ω
∖
j
29
25
28
uneq12d
ω
ω
⊢
i
=
j
→
i
z
∪
a
↾
ω
∖
i
=
j
z
∪
a
↾
ω
∖
j
30
29
adantl
ω
ω
⊢
u
=
s
∧
i
=
j
→
i
z
∪
a
↾
ω
∖
i
=
j
z
∪
a
↾
ω
∖
j
31
fveq2
⊢
u
=
s
→
2
nd
u
=
2
nd
s
32
31
adantr
⊢
u
=
s
∧
i
=
j
→
2
nd
u
=
2
nd
s
33
30
32
eleq12d
ω
ω
⊢
u
=
s
∧
i
=
j
→
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
↔
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
34
33
ralbidv
ω
ω
⊢
u
=
s
∧
i
=
j
→
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
↔
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
35
34
rabbidv
ω
ω
ω
ω
⊢
u
=
s
∧
i
=
j
→
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
36
35
eqeq2d
ω
ω
ω
ω
⊢
u
=
s
∧
i
=
j
→
y
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
↔
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
37
23
36
bitrid
ω
ω
⊢
u
=
s
∧
i
=
j
→
y
=
B
↔
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
38
22
37
anbi12d
ω
ω
⊢
u
=
s
∧
i
=
j
→
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
39
38
cbvrexdva
ω
ω
ω
ω
⊢
u
=
s
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
40
17
39
orbi12d
ω
ω
ω
ω
ω
⊢
u
=
s
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
41
40
cbvrexvw
ω
ω
ω
ω
ω
⊢
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
∃
s
∈
S
suc
N
∖
S
N
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
42
fveq2
⊢
v
=
r
→
1
st
v
=
1
st
r
43
19
42
oveqan12d
⊢
u
=
s
∧
v
=
r
→
1
st
u
⊼
𝑔
1
st
v
=
1
st
s
⊼
𝑔
1
st
r
44
43
eqeq2d
⊢
u
=
s
∧
v
=
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
↔
x
=
1
st
s
⊼
𝑔
1
st
r
45
2
eqeq2i
ω
⊢
y
=
A
↔
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
46
fveq2
⊢
v
=
r
→
2
nd
v
=
2
nd
r
47
31
46
ineqan12d
⊢
u
=
s
∧
v
=
r
→
2
nd
u
∩
2
nd
v
=
2
nd
s
∩
2
nd
r
48
47
difeq2d
ω
ω
⊢
u
=
s
∧
v
=
r
→
M
ω
∖
2
nd
u
∩
2
nd
v
=
M
ω
∖
2
nd
s
∩
2
nd
r
49
48
eqeq2d
ω
ω
⊢
u
=
s
∧
v
=
r
→
y
=
M
ω
∖
2
nd
u
∩
2
nd
v
↔
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
50
45
49
bitrid
ω
⊢
u
=
s
∧
v
=
r
→
y
=
A
↔
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
51
44
50
anbi12d
ω
⊢
u
=
s
∧
v
=
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
52
51
cbvrexdva
ω
⊢
u
=
s
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
r
∈
S
suc
N
∖
S
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
53
52
cbvrexvw
ω
⊢
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
s
∈
S
N
∃
r
∈
S
suc
N
∖
S
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
54
41
53
orbi12i
ω
ω
ω
ω
ω
ω
⊢
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
s
∈
S
suc
N
∖
S
N
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
∨
∃
s
∈
S
N
∃
r
∈
S
suc
N
∖
S
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
55
simp-5l
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
Fun
S
suc
N
56
eldifi
⊢
s
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
57
56
adantl
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
58
57
anim1i
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
s
∈
S
suc
N
∧
r
∈
S
suc
N
59
58
ad2antrr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
s
∈
S
suc
N
∧
r
∈
S
suc
N
60
eldifi
⊢
u
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
61
60
adantl
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
62
61
anim1i
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
u
∈
S
suc
N
∧
v
∈
S
suc
N
63
55
59
62
3jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
Fun
S
suc
N
∧
s
∈
S
suc
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
64
id
ω
ω
⊢
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
65
2
eqeq2i
ω
⊢
w
=
A
↔
w
=
M
ω
∖
2
nd
u
∩
2
nd
v
66
65
biimpi
ω
⊢
w
=
A
→
w
=
M
ω
∖
2
nd
u
∩
2
nd
v
67
66
anim2i
ω
⊢
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
M
ω
∖
2
nd
u
∩
2
nd
v
68
satffunlem
ω
ω
⊢
Fun
S
suc
N
∧
s
∈
S
suc
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
M
ω
∖
2
nd
u
∩
2
nd
v
→
y
=
w
69
63
64
67
68
syl3an
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
70
69
3exp
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
71
70
com23
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
72
71
rexlimdva
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
73
eqeq1
⊢
x
=
1
st
s
⊼
𝑔
1
st
r
→
x
=
∀
𝑔
i
1
st
u
↔
1
st
s
⊼
𝑔
1
st
r
=
∀
𝑔
i
1
st
u
74
fvex
⊢
1
st
s
∈
V
75
fvex
⊢
1
st
r
∈
V
76
gonafv
⊢
1
st
s
∈
V
∧
1
st
r
∈
V
→
1
st
s
⊼
𝑔
1
st
r
=
1
𝑜
1
st
s
1
st
r
77
74
75
76
mp2an
⊢
1
st
s
⊼
𝑔
1
st
r
=
1
𝑜
1
st
s
1
st
r
78
df-goal
⊢
∀
𝑔
i
1
st
u
=
2
𝑜
i
1
st
u
79
77
78
eqeq12i
⊢
1
st
s
⊼
𝑔
1
st
r
=
∀
𝑔
i
1
st
u
↔
1
𝑜
1
st
s
1
st
r
=
2
𝑜
i
1
st
u
80
1oex
⊢
1
𝑜
∈
V
81
opex
⊢
1
st
s
1
st
r
∈
V
82
80
81
opth
⊢
1
𝑜
1
st
s
1
st
r
=
2
𝑜
i
1
st
u
↔
1
𝑜
=
2
𝑜
∧
1
st
s
1
st
r
=
i
1
st
u
83
1one2o
⊢
1
𝑜
≠
2
𝑜
84
df-ne
⊢
1
𝑜
≠
2
𝑜
↔
¬
1
𝑜
=
2
𝑜
85
pm2.21
⊢
¬
1
𝑜
=
2
𝑜
→
1
𝑜
=
2
𝑜
→
y
=
w
86
84
85
sylbi
⊢
1
𝑜
≠
2
𝑜
→
1
𝑜
=
2
𝑜
→
y
=
w
87
83
86
ax-mp
⊢
1
𝑜
=
2
𝑜
→
y
=
w
88
87
adantr
⊢
1
𝑜
=
2
𝑜
∧
1
st
s
1
st
r
=
i
1
st
u
→
y
=
w
89
82
88
sylbi
⊢
1
𝑜
1
st
s
1
st
r
=
2
𝑜
i
1
st
u
→
y
=
w
90
79
89
sylbi
⊢
1
st
s
⊼
𝑔
1
st
r
=
∀
𝑔
i
1
st
u
→
y
=
w
91
73
90
syl6bi
⊢
x
=
1
st
s
⊼
𝑔
1
st
r
→
x
=
∀
𝑔
i
1
st
u
→
y
=
w
92
91
adantr
ω
⊢
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
∀
𝑔
i
1
st
u
→
y
=
w
93
92
com12
ω
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
94
93
adantr
ω
⊢
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
95
94
a1i
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
96
95
rexlimdva
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
97
72
96
jaod
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
98
97
rexlimdva
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
99
simp-4l
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
Fun
S
suc
N
100
58
adantr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
∧
r
∈
S
suc
N
101
ssel
⊢
S
N
⊆
S
suc
N
→
u
∈
S
N
→
u
∈
S
suc
N
102
101
ad3antlr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
u
∈
S
N
→
u
∈
S
suc
N
103
102
com12
⊢
u
∈
S
N
→
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
u
∈
S
suc
N
104
103
adantr
⊢
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
u
∈
S
suc
N
105
104
impcom
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
106
eldifi
⊢
v
∈
S
suc
N
∖
S
N
→
v
∈
S
suc
N
107
106
ad2antll
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
v
∈
S
suc
N
108
105
107
jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
∧
v
∈
S
suc
N
109
99
100
108
3jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
Fun
S
suc
N
∧
s
∈
S
suc
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
110
109
64
67
68
syl3an
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
111
110
3exp
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
112
111
com23
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
113
112
rexlimdvva
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
114
98
113
jaod
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
y
=
w
115
114
com23
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
r
∈
S
suc
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
116
115
rexlimdva
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
→
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
117
eqeq1
⊢
x
=
∀
𝑔
j
1
st
s
→
x
=
1
st
u
⊼
𝑔
1
st
v
↔
∀
𝑔
j
1
st
s
=
1
st
u
⊼
𝑔
1
st
v
118
df-goal
⊢
∀
𝑔
j
1
st
s
=
2
𝑜
j
1
st
s
119
fvex
⊢
1
st
u
∈
V
120
fvex
⊢
1
st
v
∈
V
121
gonafv
⊢
1
st
u
∈
V
∧
1
st
v
∈
V
→
1
st
u
⊼
𝑔
1
st
v
=
1
𝑜
1
st
u
1
st
v
122
119
120
121
mp2an
⊢
1
st
u
⊼
𝑔
1
st
v
=
1
𝑜
1
st
u
1
st
v
123
118
122
eqeq12i
⊢
∀
𝑔
j
1
st
s
=
1
st
u
⊼
𝑔
1
st
v
↔
2
𝑜
j
1
st
s
=
1
𝑜
1
st
u
1
st
v
124
2oex
⊢
2
𝑜
∈
V
125
opex
⊢
j
1
st
s
∈
V
126
124
125
opth
⊢
2
𝑜
j
1
st
s
=
1
𝑜
1
st
u
1
st
v
↔
2
𝑜
=
1
𝑜
∧
j
1
st
s
=
1
st
u
1
st
v
127
87
eqcoms
⊢
2
𝑜
=
1
𝑜
→
y
=
w
128
127
adantr
⊢
2
𝑜
=
1
𝑜
∧
j
1
st
s
=
1
st
u
1
st
v
→
y
=
w
129
126
128
sylbi
⊢
2
𝑜
j
1
st
s
=
1
𝑜
1
st
u
1
st
v
→
y
=
w
130
123
129
sylbi
⊢
∀
𝑔
j
1
st
s
=
1
st
u
⊼
𝑔
1
st
v
→
y
=
w
131
117
130
syl6bi
⊢
x
=
∀
𝑔
j
1
st
s
→
x
=
1
st
u
⊼
𝑔
1
st
v
→
y
=
w
132
131
adantr
ω
ω
⊢
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
x
=
1
st
u
⊼
𝑔
1
st
v
→
y
=
w
133
132
com12
ω
ω
⊢
x
=
1
st
u
⊼
𝑔
1
st
v
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
134
133
adantr
ω
ω
⊢
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
135
134
rexlimivw
ω
ω
⊢
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
136
135
a1i
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
137
eqeq1
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
↔
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
138
78
118
eqeq12i
⊢
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
↔
2
𝑜
i
1
st
u
=
2
𝑜
j
1
st
s
139
opex
⊢
i
1
st
u
∈
V
140
124
139
opth
⊢
2
𝑜
i
1
st
u
=
2
𝑜
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
1
st
u
=
j
1
st
s
141
vex
⊢
i
∈
V
142
141
119
opth
⊢
i
1
st
u
=
j
1
st
s
↔
i
=
j
∧
1
st
u
=
1
st
s
143
142
anbi2i
⊢
2
𝑜
=
2
𝑜
∧
i
1
st
u
=
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
144
138
140
143
3bitri
⊢
∀
𝑔
i
1
st
u
=
∀
𝑔
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
145
137
144
bitrdi
⊢
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
146
145
adantl
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
↔
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
147
56
a1i
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
s
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
148
funfv1st2nd
⊢
Fun
S
suc
N
∧
s
∈
S
suc
N
→
S
suc
N
1
st
s
=
2
nd
s
149
148
ex
⊢
Fun
S
suc
N
→
s
∈
S
suc
N
→
S
suc
N
1
st
s
=
2
nd
s
150
149
adantr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
s
∈
S
suc
N
→
S
suc
N
1
st
s
=
2
nd
s
151
funfv1st2nd
⊢
Fun
S
suc
N
∧
u
∈
S
suc
N
→
S
suc
N
1
st
u
=
2
nd
u
152
151
ex
⊢
Fun
S
suc
N
→
u
∈
S
suc
N
→
S
suc
N
1
st
u
=
2
nd
u
153
152
adantr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
u
∈
S
suc
N
→
S
suc
N
1
st
u
=
2
nd
u
154
fveqeq2
⊢
1
st
u
=
1
st
s
→
S
suc
N
1
st
u
=
2
nd
u
↔
S
suc
N
1
st
s
=
2
nd
u
155
eqtr2
⊢
S
suc
N
1
st
s
=
2
nd
u
∧
S
suc
N
1
st
s
=
2
nd
s
→
2
nd
u
=
2
nd
s
156
29
eqcomd
ω
ω
⊢
i
=
j
→
j
z
∪
a
↾
ω
∖
j
=
i
z
∪
a
↾
ω
∖
i
157
156
adantl
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
j
z
∪
a
↾
ω
∖
j
=
i
z
∪
a
↾
ω
∖
i
158
simpl
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
2
nd
u
=
2
nd
s
159
158
eqcomd
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
2
nd
s
=
2
nd
u
160
157
159
eleq12d
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
↔
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
161
160
ralbidv
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
↔
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
162
161
rabbidv
ω
ω
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
=
a
∈
M
ω
|
∀
z
∈
M
i
z
∪
a
↾
ω
∖
i
∈
2
nd
u
163
162
3
eqtr4di
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
=
B
164
eqeq12
ω
ω
ω
ω
⊢
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
∧
w
=
B
→
y
=
w
↔
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
=
B
165
163
164
syl5ibrcom
ω
ω
⊢
2
nd
u
=
2
nd
s
∧
i
=
j
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
∧
w
=
B
→
y
=
w
166
165
exp4b
ω
ω
⊢
2
nd
u
=
2
nd
s
→
i
=
j
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
167
155
166
syl
ω
ω
⊢
S
suc
N
1
st
s
=
2
nd
u
∧
S
suc
N
1
st
s
=
2
nd
s
→
i
=
j
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
168
167
ex
ω
ω
⊢
S
suc
N
1
st
s
=
2
nd
u
→
S
suc
N
1
st
s
=
2
nd
s
→
i
=
j
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
169
154
168
syl6bi
ω
ω
⊢
1
st
u
=
1
st
s
→
S
suc
N
1
st
u
=
2
nd
u
→
S
suc
N
1
st
s
=
2
nd
s
→
i
=
j
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
170
169
com24
ω
ω
⊢
1
st
u
=
1
st
s
→
i
=
j
→
S
suc
N
1
st
s
=
2
nd
s
→
S
suc
N
1
st
u
=
2
nd
u
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
171
170
impcom
ω
ω
⊢
i
=
j
∧
1
st
u
=
1
st
s
→
S
suc
N
1
st
s
=
2
nd
s
→
S
suc
N
1
st
u
=
2
nd
u
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
172
171
com13
ω
ω
⊢
S
suc
N
1
st
u
=
2
nd
u
→
S
suc
N
1
st
s
=
2
nd
s
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
173
60
153
172
syl56
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
u
∈
S
suc
N
∖
S
N
→
S
suc
N
1
st
s
=
2
nd
s
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
174
173
com23
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
S
suc
N
1
st
s
=
2
nd
s
→
u
∈
S
suc
N
∖
S
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
175
147
150
174
3syld
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
s
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
∖
S
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
176
175
imp
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
∖
S
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
177
176
adantr
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
→
u
∈
S
suc
N
∖
S
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
178
177
imp
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
→
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
179
178
adantld
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
→
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
180
179
ad2antrr
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
2
𝑜
=
2
𝑜
∧
i
=
j
∧
1
st
u
=
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
181
146
180
sylbid
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
→
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
182
181
impd
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
∧
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
183
182
ex
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
w
=
B
→
y
=
w
184
183
com34
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
→
w
=
B
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
185
184
impd
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
186
185
rexlimdva
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
187
136
186
jaod
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
188
187
rexlimdva
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
189
134
a1i
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
190
189
rexlimdva
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
∧
u
∈
S
N
→
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
191
190
rexlimdva
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
192
188
191
jaod
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
y
=
w
193
192
com23
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
∧
j
∈
ω
→
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
194
193
rexlimdva
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
→
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
195
116
194
jaod
ω
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
suc
N
∖
S
N
→
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
196
195
rexlimdva
ω
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∃
s
∈
S
suc
N
∖
S
N
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
197
simplll
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
Fun
S
suc
N
198
ssel
⊢
S
N
⊆
S
suc
N
→
s
∈
S
N
→
s
∈
S
suc
N
199
198
adantrd
⊢
S
N
⊆
S
suc
N
→
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
200
199
adantl
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
201
200
imp
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
202
eldifi
⊢
r
∈
S
suc
N
∖
S
N
→
r
∈
S
suc
N
203
202
ad2antll
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
r
∈
S
suc
N
204
201
203
jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
∧
r
∈
S
suc
N
205
204
adantr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
s
∈
S
suc
N
∧
r
∈
S
suc
N
206
60
anim1i
⊢
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
u
∈
S
suc
N
∧
v
∈
S
suc
N
207
206
adantl
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
u
∈
S
suc
N
∧
v
∈
S
suc
N
208
197
205
207
3jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
Fun
S
suc
N
∧
s
∈
S
suc
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
209
208
adantr
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
Fun
S
suc
N
∧
s
∈
S
suc
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
210
simprl
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
211
67
ad2antll
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
M
ω
∖
2
nd
u
∩
2
nd
v
212
209
210
211
68
syl3anc
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
213
212
exp32
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
214
213
impancom
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
u
∈
S
suc
N
∖
S
N
∧
v
∈
S
suc
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
215
214
expdimp
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
u
∈
S
suc
N
∖
S
N
→
v
∈
S
suc
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
216
215
rexlimdv
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
217
91
adantrd
⊢
x
=
1
st
s
⊼
𝑔
1
st
r
→
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
y
=
w
218
217
adantr
ω
⊢
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
y
=
w
219
218
ad3antlr
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
u
∈
S
suc
N
∖
S
N
∧
i
∈
ω
→
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
y
=
w
220
219
rexlimdva
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
u
∈
S
suc
N
∖
S
N
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
y
=
w
221
216
220
jaod
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
u
∈
S
suc
N
∖
S
N
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
y
=
w
222
221
rexlimdva
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
→
y
=
w
223
simplll
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
Fun
S
suc
N
224
204
adantr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
s
∈
S
suc
N
∧
r
∈
S
suc
N
225
101
adantl
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
u
∈
S
N
→
u
∈
S
suc
N
226
225
adantr
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
u
∈
S
N
→
u
∈
S
suc
N
227
226
com12
⊢
u
∈
S
N
→
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
228
227
adantr
⊢
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
229
228
impcom
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
230
106
ad2antll
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
v
∈
S
suc
N
231
229
230
jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
u
∈
S
suc
N
∧
v
∈
S
suc
N
232
223
224
231
3jca
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
Fun
S
suc
N
∧
s
∈
S
suc
N
∧
r
∈
S
suc
N
∧
u
∈
S
suc
N
∧
v
∈
S
suc
N
233
232
64
67
68
syl3an
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∧
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
234
233
3exp
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
235
234
impancom
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
u
∈
S
N
∧
v
∈
S
suc
N
∖
S
N
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
236
235
rexlimdvv
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
237
222
236
jaod
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
∧
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
238
237
ex
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
∧
s
∈
S
N
∧
r
∈
S
suc
N
∖
S
N
→
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
239
238
rexlimdvva
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∃
s
∈
S
N
∃
r
∈
S
suc
N
∖
S
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
240
196
239
jaod
ω
ω
ω
ω
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∃
s
∈
S
suc
N
∖
S
N
∃
r
∈
S
suc
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
∨
∃
j
∈
ω
x
=
∀
𝑔
j
1
st
s
∧
y
=
a
∈
M
ω
|
∀
z
∈
M
j
z
∪
a
↾
ω
∖
j
∈
2
nd
s
∨
∃
s
∈
S
N
∃
r
∈
S
suc
N
∖
S
N
x
=
1
st
s
⊼
𝑔
1
st
r
∧
y
=
M
ω
∖
2
nd
s
∩
2
nd
r
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
241
54
240
biimtrid
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
242
241
impd
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∧
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
243
242
alrimivv
ω
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∀
y
∀
w
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∧
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
244
eqeq1
⊢
y
=
w
→
y
=
A
↔
w
=
A
245
244
anbi2d
⊢
y
=
w
→
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
246
245
rexbidv
⊢
y
=
w
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
247
eqeq1
⊢
y
=
w
→
y
=
B
↔
w
=
B
248
247
anbi2d
⊢
y
=
w
→
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
249
248
rexbidv
ω
ω
⊢
y
=
w
→
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
250
246
249
orbi12d
ω
ω
⊢
y
=
w
→
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
251
250
rexbidv
ω
ω
⊢
y
=
w
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
↔
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
252
245
2rexbidv
⊢
y
=
w
→
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
253
251
252
orbi12d
ω
ω
⊢
y
=
w
→
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
254
253
mo4
ω
ω
ω
⊢
∃
*
y
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∀
y
∀
w
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∧
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
w
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
w
=
A
→
y
=
w
255
243
254
sylibr
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∃
*
y
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
256
255
alrimiv
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
∀
x
∃
*
y
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
257
funopab
ω
ω
⊢
Fun
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
↔
∀
x
∃
*
y
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
258
256
257
sylibr
ω
⊢
Fun
S
suc
N
∧
S
N
⊆
S
suc
N
→
Fun
x
y
|
∃
u
∈
S
suc
N
∖
S
N
∃
v
∈
S
suc
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A
∨
∃
i
∈
ω
x
=
∀
𝑔
i
1
st
u
∧
y
=
B
∨
∃
u
∈
S
N
∃
v
∈
S
suc
N
∖
S
N
x
=
1
st
u
⊼
𝑔
1
st
v
∧
y
=
A