Metamath Proof Explorer


Theorem satffunlem2lem1

Description: Lemma 1 for satffunlem2 . (Contributed by AV, 28-Oct-2023)

Ref Expression
Hypotheses satffunlem2lem1.s S=MSatE
satffunlem2lem1.a A=Mω2ndu2ndv
satffunlem2lem1.b B=aMω|zMizaωi2ndu
Assertion satffunlem2lem1 FunSsucNSNSsucNFunxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A

Proof

Step Hyp Ref Expression
1 satffunlem2lem1.s S=MSatE
2 satffunlem2lem1.a A=Mω2ndu2ndv
3 satffunlem2lem1.b B=aMω|zMizaωi2ndu
4 simpl u=sv=ru=s
5 4 fveq2d u=sv=r1stu=1sts
6 simpr u=sv=rv=r
7 6 fveq2d u=sv=r1stv=1str
8 5 7 oveq12d u=sv=r1stu𝑔1stv=1sts𝑔1str
9 8 eqeq2d u=sv=rx=1stu𝑔1stvx=1sts𝑔1str
10 4 fveq2d u=sv=r2ndu=2nds
11 6 fveq2d u=sv=r2ndv=2ndr
12 10 11 ineq12d u=sv=r2ndu2ndv=2nds2ndr
13 12 difeq2d u=sv=rMω2ndu2ndv=Mω2nds2ndr
14 2 13 eqtrid u=sv=rA=Mω2nds2ndr
15 14 eqeq2d u=sv=ry=Ay=Mω2nds2ndr
16 9 15 anbi12d u=sv=rx=1stu𝑔1stvy=Ax=1sts𝑔1stry=Mω2nds2ndr
17 16 cbvrexdva u=svSsucNx=1stu𝑔1stvy=ArSsucNx=1sts𝑔1stry=Mω2nds2ndr
18 simpr u=si=ji=j
19 fveq2 u=s1stu=1sts
20 19 adantr u=si=j1stu=1sts
21 18 20 goaleq12d u=si=j𝑔i1stu=𝑔j1sts
22 21 eqeq2d u=si=jx=𝑔i1stux=𝑔j1sts
23 3 eqeq2i y=By=aMω|zMizaωi2ndu
24 opeq1 i=jiz=jz
25 24 sneqd i=jiz=jz
26 sneq i=ji=j
27 26 difeq2d i=jωi=ωj
28 27 reseq2d i=jaωi=aωj
29 25 28 uneq12d i=jizaωi=jzaωj
30 29 adantl u=si=jizaωi=jzaωj
31 fveq2 u=s2ndu=2nds
32 31 adantr u=si=j2ndu=2nds
33 30 32 eleq12d u=si=jizaωi2ndujzaωj2nds
34 33 ralbidv u=si=jzMizaωi2nduzMjzaωj2nds
35 34 rabbidv u=si=jaMω|zMizaωi2ndu=aMω|zMjzaωj2nds
36 35 eqeq2d u=si=jy=aMω|zMizaωi2nduy=aMω|zMjzaωj2nds
37 23 36 bitrid u=si=jy=By=aMω|zMjzaωj2nds
38 22 37 anbi12d u=si=jx=𝑔i1stuy=Bx=𝑔j1stsy=aMω|zMjzaωj2nds
39 38 cbvrexdva u=siωx=𝑔i1stuy=Bjωx=𝑔j1stsy=aMω|zMjzaωj2nds
40 17 39 orbi12d u=svSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BrSsucNx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=aMω|zMjzaωj2nds
41 40 cbvrexvw uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=aMω|zMjzaωj2nds
42 fveq2 v=r1stv=1str
43 19 42 oveqan12d u=sv=r1stu𝑔1stv=1sts𝑔1str
44 43 eqeq2d u=sv=rx=1stu𝑔1stvx=1sts𝑔1str
45 2 eqeq2i y=Ay=Mω2ndu2ndv
46 fveq2 v=r2ndv=2ndr
47 31 46 ineqan12d u=sv=r2ndu2ndv=2nds2ndr
48 47 difeq2d u=sv=rMω2ndu2ndv=Mω2nds2ndr
49 48 eqeq2d u=sv=ry=Mω2ndu2ndvy=Mω2nds2ndr
50 45 49 bitrid u=sv=ry=Ay=Mω2nds2ndr
51 44 50 anbi12d u=sv=rx=1stu𝑔1stvy=Ax=1sts𝑔1stry=Mω2nds2ndr
52 51 cbvrexdva u=svSsucNSNx=1stu𝑔1stvy=ArSsucNSNx=1sts𝑔1stry=Mω2nds2ndr
53 52 cbvrexvw uSNvSsucNSNx=1stu𝑔1stvy=AsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndr
54 41 53 orbi12i uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=aMω|zMjzaωj2ndssSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndr
55 simp-5l FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNFunSsucN
56 eldifi sSsucNSNsSsucN
57 56 adantl FunSsucNSNSsucNsSsucNSNsSsucN
58 57 anim1i FunSsucNSNSsucNsSsucNSNrSsucNsSsucNrSsucN
59 58 ad2antrr FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNsSsucNrSsucN
60 eldifi uSsucNSNuSsucN
61 60 adantl FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNuSsucN
62 61 anim1i FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNuSsucNvSsucN
63 55 59 62 3jca FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNFunSsucNsSsucNrSsucNuSsucNvSsucN
64 id x=1sts𝑔1stry=Mω2nds2ndrx=1sts𝑔1stry=Mω2nds2ndr
65 2 eqeq2i w=Aw=Mω2ndu2ndv
66 65 biimpi w=Aw=Mω2ndu2ndv
67 66 anim2i x=1stu𝑔1stvw=Ax=1stu𝑔1stvw=Mω2ndu2ndv
68 satffunlem FunSsucNsSsucNrSsucNuSsucNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Mω2ndu2ndvy=w
69 63 64 67 68 syl3an FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
70 69 3exp FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
71 70 com23 FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1stu𝑔1stvw=Ax=1sts𝑔1stry=Mω2nds2ndry=w
72 71 rexlimdva FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1stu𝑔1stvw=Ax=1sts𝑔1stry=Mω2nds2ndry=w
73 eqeq1 x=1sts𝑔1strx=𝑔i1stu1sts𝑔1str=𝑔i1stu
74 fvex 1stsV
75 fvex 1strV
76 gonafv 1stsV1strV1sts𝑔1str=1𝑜1sts1str
77 74 75 76 mp2an 1sts𝑔1str=1𝑜1sts1str
78 df-goal 𝑔i1stu=2𝑜i1stu
79 77 78 eqeq12i 1sts𝑔1str=𝑔i1stu1𝑜1sts1str=2𝑜i1stu
80 1oex 1𝑜V
81 opex 1sts1strV
82 80 81 opth 1𝑜1sts1str=2𝑜i1stu1𝑜=2𝑜1sts1str=i1stu
83 1one2o 1𝑜2𝑜
84 df-ne 1𝑜2𝑜¬1𝑜=2𝑜
85 pm2.21 ¬1𝑜=2𝑜1𝑜=2𝑜y=w
86 84 85 sylbi 1𝑜2𝑜1𝑜=2𝑜y=w
87 83 86 ax-mp 1𝑜=2𝑜y=w
88 87 adantr 1𝑜=2𝑜1sts1str=i1stuy=w
89 82 88 sylbi 1𝑜1sts1str=2𝑜i1stuy=w
90 79 89 sylbi 1sts𝑔1str=𝑔i1stuy=w
91 73 90 syl6bi x=1sts𝑔1strx=𝑔i1stuy=w
92 91 adantr x=1sts𝑔1stry=Mω2nds2ndrx=𝑔i1stuy=w
93 92 com12 x=𝑔i1stux=1sts𝑔1stry=Mω2nds2ndry=w
94 93 adantr x=𝑔i1stuw=Bx=1sts𝑔1stry=Mω2nds2ndry=w
95 94 a1i FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNiωx=𝑔i1stuw=Bx=1sts𝑔1stry=Mω2nds2ndry=w
96 95 rexlimdva FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNiωx=𝑔i1stuw=Bx=1sts𝑔1stry=Mω2nds2ndry=w
97 72 96 jaod FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=Bx=1sts𝑔1stry=Mω2nds2ndry=w
98 97 rexlimdva FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=Bx=1sts𝑔1stry=Mω2nds2ndry=w
99 simp-4l FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNFunSsucN
100 58 adantr FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNsSsucNrSsucN
101 ssel SNSsucNuSNuSsucN
102 101 ad3antlr FunSsucNSNSsucNsSsucNSNrSsucNuSNuSsucN
103 102 com12 uSNFunSsucNSNSsucNsSsucNSNrSsucNuSsucN
104 103 adantr uSNvSsucNSNFunSsucNSNSsucNsSsucNSNrSsucNuSsucN
105 104 impcom FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNuSsucN
106 eldifi vSsucNSNvSsucN
107 106 ad2antll FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNvSsucN
108 105 107 jca FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNuSsucNvSsucN
109 99 100 108 3jca FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNFunSsucNsSsucNrSsucNuSsucNvSsucN
110 109 64 67 68 syl3an FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
111 110 3exp FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
112 111 com23 FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNx=1stu𝑔1stvw=Ax=1sts𝑔1stry=Mω2nds2ndry=w
113 112 rexlimdvva FunSsucNSNSsucNsSsucNSNrSsucNuSNvSsucNSNx=1stu𝑔1stvw=Ax=1sts𝑔1stry=Mω2nds2ndry=w
114 98 113 jaod FunSsucNSNSsucNsSsucNSNrSsucNuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ax=1sts𝑔1stry=Mω2nds2ndry=w
115 114 com23 FunSsucNSNSsucNsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
116 115 rexlimdva FunSsucNSNSsucNsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
117 eqeq1 x=𝑔j1stsx=1stu𝑔1stv𝑔j1sts=1stu𝑔1stv
118 df-goal 𝑔j1sts=2𝑜j1sts
119 fvex 1stuV
120 fvex 1stvV
121 gonafv 1stuV1stvV1stu𝑔1stv=1𝑜1stu1stv
122 119 120 121 mp2an 1stu𝑔1stv=1𝑜1stu1stv
123 118 122 eqeq12i 𝑔j1sts=1stu𝑔1stv2𝑜j1sts=1𝑜1stu1stv
124 2oex 2𝑜V
125 opex j1stsV
126 124 125 opth 2𝑜j1sts=1𝑜1stu1stv2𝑜=1𝑜j1sts=1stu1stv
127 87 eqcoms 2𝑜=1𝑜y=w
128 127 adantr 2𝑜=1𝑜j1sts=1stu1stvy=w
129 126 128 sylbi 2𝑜j1sts=1𝑜1stu1stvy=w
130 123 129 sylbi 𝑔j1sts=1stu𝑔1stvy=w
131 117 130 syl6bi x=𝑔j1stsx=1stu𝑔1stvy=w
132 131 adantr x=𝑔j1stsy=aMω|zMjzaωj2ndsx=1stu𝑔1stvy=w
133 132 com12 x=1stu𝑔1stvx=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
134 133 adantr x=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
135 134 rexlimivw vSsucNx=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
136 135 a1i FunSsucNSNSsucNsSsucNSNjωuSsucNSNvSsucNx=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
137 eqeq1 x=𝑔i1stux=𝑔j1sts𝑔i1stu=𝑔j1sts
138 78 118 eqeq12i 𝑔i1stu=𝑔j1sts2𝑜i1stu=2𝑜j1sts
139 opex i1stuV
140 124 139 opth 2𝑜i1stu=2𝑜j1sts2𝑜=2𝑜i1stu=j1sts
141 vex iV
142 141 119 opth i1stu=j1stsi=j1stu=1sts
143 142 anbi2i 2𝑜=2𝑜i1stu=j1sts2𝑜=2𝑜i=j1stu=1sts
144 138 140 143 3bitri 𝑔i1stu=𝑔j1sts2𝑜=2𝑜i=j1stu=1sts
145 137 144 bitrdi x=𝑔i1stux=𝑔j1sts2𝑜=2𝑜i=j1stu=1sts
146 145 adantl FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stux=𝑔j1sts2𝑜=2𝑜i=j1stu=1sts
147 56 a1i FunSsucNSNSsucNsSsucNSNsSsucN
148 funfv1st2nd FunSsucNsSsucNSsucN1sts=2nds
149 148 ex FunSsucNsSsucNSsucN1sts=2nds
150 149 adantr FunSsucNSNSsucNsSsucNSsucN1sts=2nds
151 funfv1st2nd FunSsucNuSsucNSsucN1stu=2ndu
152 151 ex FunSsucNuSsucNSsucN1stu=2ndu
153 152 adantr FunSsucNSNSsucNuSsucNSsucN1stu=2ndu
154 fveqeq2 1stu=1stsSsucN1stu=2nduSsucN1sts=2ndu
155 eqtr2 SsucN1sts=2nduSsucN1sts=2nds2ndu=2nds
156 29 eqcomd i=jjzaωj=izaωi
157 156 adantl 2ndu=2ndsi=jjzaωj=izaωi
158 simpl 2ndu=2ndsi=j2ndu=2nds
159 158 eqcomd 2ndu=2ndsi=j2nds=2ndu
160 157 159 eleq12d 2ndu=2ndsi=jjzaωj2ndsizaωi2ndu
161 160 ralbidv 2ndu=2ndsi=jzMjzaωj2ndszMizaωi2ndu
162 161 rabbidv 2ndu=2ndsi=jaMω|zMjzaωj2nds=aMω|zMizaωi2ndu
163 162 3 eqtr4di 2ndu=2ndsi=jaMω|zMjzaωj2nds=B
164 eqeq12 y=aMω|zMjzaωj2ndsw=By=waMω|zMjzaωj2nds=B
165 163 164 syl5ibrcom 2ndu=2ndsi=jy=aMω|zMjzaωj2ndsw=By=w
166 165 exp4b 2ndu=2ndsi=jy=aMω|zMjzaωj2ndsw=By=w
167 155 166 syl SsucN1sts=2nduSsucN1sts=2ndsi=jy=aMω|zMjzaωj2ndsw=By=w
168 167 ex SsucN1sts=2nduSsucN1sts=2ndsi=jy=aMω|zMjzaωj2ndsw=By=w
169 154 168 syl6bi 1stu=1stsSsucN1stu=2nduSsucN1sts=2ndsi=jy=aMω|zMjzaωj2ndsw=By=w
170 169 com24 1stu=1stsi=jSsucN1sts=2ndsSsucN1stu=2nduy=aMω|zMjzaωj2ndsw=By=w
171 170 impcom i=j1stu=1stsSsucN1sts=2ndsSsucN1stu=2nduy=aMω|zMjzaωj2ndsw=By=w
172 171 com13 SsucN1stu=2nduSsucN1sts=2ndsi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
173 60 153 172 syl56 FunSsucNSNSsucNuSsucNSNSsucN1sts=2ndsi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
174 173 com23 FunSsucNSNSsucNSsucN1sts=2ndsuSsucNSNi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
175 147 150 174 3syld FunSsucNSNSsucNsSsucNSNuSsucNSNi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
176 175 imp FunSsucNSNSsucNsSsucNSNuSsucNSNi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
177 176 adantr FunSsucNSNSsucNsSsucNSNjωuSsucNSNi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
178 177 imp FunSsucNSNSsucNsSsucNSNjωuSsucNSNi=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
179 178 adantld FunSsucNSNSsucNsSsucNSNjωuSsucNSN2𝑜=2𝑜i=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
180 179 ad2antrr FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stu2𝑜=2𝑜i=j1stu=1stsy=aMω|zMjzaωj2ndsw=By=w
181 146 180 sylbid FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stux=𝑔j1stsy=aMω|zMjzaωj2ndsw=By=w
182 181 impd FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stux=𝑔j1stsy=aMω|zMjzaωj2ndsw=By=w
183 182 ex FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stux=𝑔j1stsy=aMω|zMjzaωj2ndsw=By=w
184 183 com34 FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stuw=Bx=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
185 184 impd FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stuw=Bx=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
186 185 rexlimdva FunSsucNSNSsucNsSsucNSNjωuSsucNSNiωx=𝑔i1stuw=Bx=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
187 136 186 jaod FunSsucNSNSsucNsSsucNSNjωuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=Bx=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
188 187 rexlimdva FunSsucNSNSsucNsSsucNSNjωuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=Bx=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
189 134 a1i FunSsucNSNSsucNsSsucNSNjωuSNvSsucNSNx=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
190 189 rexlimdva FunSsucNSNSsucNsSsucNSNjωuSNvSsucNSNx=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
191 190 rexlimdva FunSsucNSNSsucNsSsucNSNjωuSNvSsucNSNx=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
192 188 191 jaod FunSsucNSNSsucNsSsucNSNjωuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ax=𝑔j1stsy=aMω|zMjzaωj2ndsy=w
193 192 com23 FunSsucNSNSsucNsSsucNSNjωx=𝑔j1stsy=aMω|zMjzaωj2ndsuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
194 193 rexlimdva FunSsucNSNSsucNsSsucNSNjωx=𝑔j1stsy=aMω|zMjzaωj2ndsuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
195 116 194 jaod FunSsucNSNSsucNsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=aMω|zMjzaωj2ndsuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
196 195 rexlimdva FunSsucNSNSsucNsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=aMω|zMjzaωj2ndsuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
197 simplll FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNFunSsucN
198 ssel SNSsucNsSNsSsucN
199 198 adantrd SNSsucNsSNrSsucNSNsSsucN
200 199 adantl FunSsucNSNSsucNsSNrSsucNSNsSsucN
201 200 imp FunSsucNSNSsucNsSNrSsucNSNsSsucN
202 eldifi rSsucNSNrSsucN
203 202 ad2antll FunSsucNSNSsucNsSNrSsucNSNrSsucN
204 201 203 jca FunSsucNSNSsucNsSNrSsucNSNsSsucNrSsucN
205 204 adantr FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNsSsucNrSsucN
206 60 anim1i uSsucNSNvSsucNuSsucNvSsucN
207 206 adantl FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNuSsucNvSsucN
208 197 205 207 3jca FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNFunSsucNsSsucNrSsucNuSsucNvSsucN
209 208 adantr FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=AFunSsucNsSsucNrSsucNuSsucNvSsucN
210 simprl FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ax=1sts𝑔1stry=Mω2nds2ndr
211 67 ad2antll FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ax=1stu𝑔1stvw=Mω2ndu2ndv
212 209 210 211 68 syl3anc FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
213 212 exp32 FunSsucNSNSsucNsSNrSsucNSNuSsucNSNvSsucNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
214 213 impancom FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Ay=w
215 214 expdimp FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Ay=w
216 215 rexlimdv FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Ay=w
217 91 adantrd x=1sts𝑔1strx=𝑔i1stuw=By=w
218 217 adantr x=1sts𝑔1stry=Mω2nds2ndrx=𝑔i1stuw=By=w
219 218 ad3antlr FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNiωx=𝑔i1stuw=By=w
220 219 rexlimdva FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNiωx=𝑔i1stuw=By=w
221 216 220 jaod FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=By=w
222 221 rexlimdva FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=By=w
223 simplll FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNFunSsucN
224 204 adantr FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNsSsucNrSsucN
225 101 adantl FunSsucNSNSsucNuSNuSsucN
226 225 adantr FunSsucNSNSsucNsSNrSsucNSNuSNuSsucN
227 226 com12 uSNFunSsucNSNSsucNsSNrSsucNSNuSsucN
228 227 adantr uSNvSsucNSNFunSsucNSNSsucNsSNrSsucNSNuSsucN
229 228 impcom FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNuSsucN
230 106 ad2antll FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNvSsucN
231 229 230 jca FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNuSsucNvSsucN
232 223 224 231 3jca FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNFunSsucNsSsucNrSsucNuSsucNvSsucN
233 232 64 67 68 syl3an FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
234 233 3exp FunSsucNSNSsucNsSNrSsucNSNuSNvSsucNSNx=1sts𝑔1stry=Mω2nds2ndrx=1stu𝑔1stvw=Ay=w
235 234 impancom FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSNvSsucNSNx=1stu𝑔1stvw=Ay=w
236 235 rexlimdvv FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSNvSsucNSNx=1stu𝑔1stvw=Ay=w
237 222 236 jaod FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
238 237 ex FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
239 238 rexlimdvva FunSsucNSNSsucNsSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
240 196 239 jaod FunSsucNSNSsucNsSsucNSNrSsucNx=1sts𝑔1stry=Mω2nds2ndrjωx=𝑔j1stsy=aMω|zMjzaωj2ndssSNrSsucNSNx=1sts𝑔1stry=Mω2nds2ndruSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
241 54 240 biimtrid FunSsucNSNSsucNuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
242 241 impd FunSsucNSNSsucNuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
243 242 alrimivv FunSsucNSNSsucNywuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
244 eqeq1 y=wy=Aw=A
245 244 anbi2d y=wx=1stu𝑔1stvy=Ax=1stu𝑔1stvw=A
246 245 rexbidv y=wvSsucNx=1stu𝑔1stvy=AvSsucNx=1stu𝑔1stvw=A
247 eqeq1 y=wy=Bw=B
248 247 anbi2d y=wx=𝑔i1stuy=Bx=𝑔i1stuw=B
249 248 rexbidv y=wiωx=𝑔i1stuy=Biωx=𝑔i1stuw=B
250 246 249 orbi12d y=wvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=B
251 250 rexbidv y=wuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=B
252 245 2rexbidv y=wuSNvSsucNSNx=1stu𝑔1stvy=AuSNvSsucNSNx=1stu𝑔1stvw=A
253 251 252 orbi12d y=wuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=A
254 253 mo4 *yuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AywuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=AuSsucNSNvSsucNx=1stu𝑔1stvw=Aiωx=𝑔i1stuw=BuSNvSsucNSNx=1stu𝑔1stvw=Ay=w
255 243 254 sylibr FunSsucNSNSsucN*yuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
256 255 alrimiv FunSsucNSNSsucNx*yuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
257 funopab Funxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=Ax*yuSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A
258 256 257 sylibr FunSsucNSNSsucNFunxy|uSsucNSNvSsucNx=1stu𝑔1stvy=Aiωx=𝑔i1stuy=BuSNvSsucNSNx=1stu𝑔1stvy=A