Metamath Proof Explorer


Theorem selberg

Description: Selberg's symmetry formula. The statement has many forms, and this one is equivalent to the statement that sum_ n <_ x , Lam ( n ) log n + sum_ m x. n <_ x , Lam ( m ) Lam ( n ) = 2 x log x + O ( x ) . Equation 10.4.10 of Shapiro, p. 419. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberg x+n=1xΛnlogn+ψxnx2logx𝑂1

Proof

Step Hyp Ref Expression
1 fveq2 n=dΛn=Λd
2 oveq2 n=dxn=xd
3 2 fveq2d n=dψxn=ψxd
4 1 3 oveq12d n=dΛnψxn=Λdψxd
5 4 cbvsumv n=1xΛnψxn=d=1xΛdψxd
6 fzfid x+d1x1xdFin
7 elfznn d1xd
8 7 adantl x+d1xd
9 vmacl dΛd
10 8 9 syl x+d1xΛd
11 10 recnd x+d1xΛd
12 elfznn m1xdm
13 12 adantl x+d1xm1xdm
14 vmacl mΛm
15 13 14 syl x+d1xm1xdΛm
16 15 recnd x+d1xm1xdΛm
17 6 11 16 fsummulc2 x+d1xΛdm=1xdΛm=m=1xdΛdΛm
18 7 nnrpd d1xd+
19 rpdivcl x+d+xd+
20 18 19 sylan2 x+d1xxd+
21 20 rpred x+d1xxd
22 chpval xdψxd=m=1xdΛm
23 21 22 syl x+d1xψxd=m=1xdΛm
24 23 oveq2d x+d1xΛdψxd=Λdm=1xdΛm
25 13 nncnd x+d1xm1xdm
26 7 ad2antlr x+d1xm1xdd
27 26 nncnd x+d1xm1xdd
28 26 nnne0d x+d1xm1xdd0
29 25 27 28 divcan3d x+d1xm1xddmd=m
30 29 fveq2d x+d1xm1xdΛdmd=Λm
31 30 oveq2d x+d1xm1xdΛdΛdmd=ΛdΛm
32 31 sumeq2dv x+d1xm=1xdΛdΛdmd=m=1xdΛdΛm
33 17 24 32 3eqtr4d x+d1xΛdψxd=m=1xdΛdΛdmd
34 33 sumeq2dv x+d=1xΛdψxd=d=1xm=1xdΛdΛdmd
35 5 34 eqtrid x+n=1xΛnψxn=d=1xm=1xdΛdΛdmd
36 fvoveq1 n=dmΛnd=Λdmd
37 36 oveq2d n=dmΛdΛnd=ΛdΛdmd
38 rpre x+x
39 ssrab2 y|yn
40 simprr x+n1xdy|yndy|yn
41 39 40 sselid x+n1xdy|ynd
42 41 anassrs x+n1xdy|ynd
43 42 9 syl x+n1xdy|ynΛd
44 elfznn n1xn
45 44 adantl x+n1xn
46 dvdsdivcl ndy|ynndy|yn
47 45 46 sylan x+n1xdy|ynndy|yn
48 39 47 sselid x+n1xdy|ynnd
49 vmacl ndΛnd
50 48 49 syl x+n1xdy|ynΛnd
51 43 50 remulcld x+n1xdy|ynΛdΛnd
52 51 recnd x+n1xdy|ynΛdΛnd
53 52 anasss x+n1xdy|ynΛdΛnd
54 37 38 53 dvdsflsumcom x+n=1xdy|ynΛdΛnd=d=1xm=1xdΛdΛdmd
55 35 54 eqtr4d x+n=1xΛnψxn=n=1xdy|ynΛdΛnd
56 55 oveq1d x+n=1xΛnψxn+n=1xΛnlogn=n=1xdy|ynΛdΛnd+n=1xΛnlogn
57 fzfid x+1xFin
58 vmacl nΛn
59 45 58 syl x+n1xΛn
60 59 recnd x+n1xΛn
61 44 nnrpd n1xn+
62 rpdivcl x+n+xn+
63 61 62 sylan2 x+n1xxn+
64 63 rpred x+n1xxn
65 chpcl xnψxn
66 64 65 syl x+n1xψxn
67 66 recnd x+n1xψxn
68 60 67 mulcld x+n1xΛnψxn
69 45 nnrpd x+n1xn+
70 relogcl n+logn
71 69 70 syl x+n1xlogn
72 71 recnd x+n1xlogn
73 60 72 mulcld x+n1xΛnlogn
74 57 68 73 fsumadd x+n=1xΛnψxn+Λnlogn=n=1xΛnψxn+n=1xΛnlogn
75 fzfid x+n1x1nFin
76 dvdsssfz1 ny|yn1n
77 45 76 syl x+n1xy|yn1n
78 75 77 ssfid x+n1xy|ynFin
79 78 51 fsumrecl x+n1xdy|ynΛdΛnd
80 79 recnd x+n1xdy|ynΛdΛnd
81 57 80 73 fsumadd x+n=1xdy|ynΛdΛnd+Λnlogn=n=1xdy|ynΛdΛnd+n=1xΛnlogn
82 56 74 81 3eqtr4d x+n=1xΛnψxn+Λnlogn=n=1xdy|ynΛdΛnd+Λnlogn
83 72 67 addcomd x+n1xlogn+ψxn=ψxn+logn
84 83 oveq2d x+n1xΛnlogn+ψxn=Λnψxn+logn
85 60 67 72 adddid x+n1xΛnψxn+logn=Λnψxn+Λnlogn
86 84 85 eqtrd x+n1xΛnlogn+ψxn=Λnψxn+Λnlogn
87 86 sumeq2dv x+n=1xΛnlogn+ψxn=n=1xΛnψxn+Λnlogn
88 logsqvma2 ndy|ynμdlognd2=dy|ynΛdΛnd+Λnlogn
89 45 88 syl x+n1xdy|ynμdlognd2=dy|ynΛdΛnd+Λnlogn
90 89 sumeq2dv x+n=1xdy|ynμdlognd2=n=1xdy|ynΛdΛnd+Λnlogn
91 82 87 90 3eqtr4d x+n=1xΛnlogn+ψxn=n=1xdy|ynμdlognd2
92 fvoveq1 n=dmlognd=logdmd
93 92 oveq1d n=dmlognd2=logdmd2
94 93 oveq2d n=dmμdlognd2=μdlogdmd2
95 mucl dμd
96 41 95 syl x+n1xdy|ynμd
97 96 zcnd x+n1xdy|ynμd
98 61 ad2antrl x+n1xdy|ynn+
99 41 nnrpd x+n1xdy|ynd+
100 98 99 rpdivcld x+n1xdy|ynnd+
101 relogcl nd+lognd
102 101 recnd nd+lognd
103 100 102 syl x+n1xdy|ynlognd
104 103 sqcld x+n1xdy|ynlognd2
105 97 104 mulcld x+n1xdy|ynμdlognd2
106 94 38 105 dvdsflsumcom x+n=1xdy|ynμdlognd2=d=1xm=1xdμdlogdmd2
107 29 fveq2d x+d1xm1xdlogdmd=logm
108 107 oveq1d x+d1xm1xdlogdmd2=logm2
109 108 oveq2d x+d1xm1xdμdlogdmd2=μdlogm2
110 109 sumeq2dv x+d1xm=1xdμdlogdmd2=m=1xdμdlogm2
111 110 sumeq2dv x+d=1xm=1xdμdlogdmd2=d=1xm=1xdμdlogm2
112 91 106 111 3eqtrd x+n=1xΛnlogn+ψxn=d=1xm=1xdμdlogm2
113 112 oveq1d x+n=1xΛnlogn+ψxnx=d=1xm=1xdμdlogm2x
114 113 oveq1d x+n=1xΛnlogn+ψxnx2logx=d=1xm=1xdμdlogm2x2logx
115 114 mpteq2ia x+n=1xΛnlogn+ψxnx2logx=x+d=1xm=1xdμdlogm2x2logx
116 eqid logxd2+2-2logxdd=logxd2+2-2logxdd
117 116 selberglem2 x+d=1xm=1xdμdlogm2x2logx𝑂1
118 115 117 eqeltri x+n=1xΛnlogn+ψxnx2logx𝑂1