Metamath Proof Explorer


Theorem selberg4

Description: The Selberg symmetry formula for products of three primes, instead of two. The sum here can also be written in the symmetric form sum_ i j k <_ x , Lam ( i ) Lam ( j ) Lam ( k ) ; we eliminate one of the nested sums by using the definition of psi ( x ) = sum_ k <_ x , Lam ( k ) . This statement can thus equivalently be written psi ( x ) log ^ 2 ( x ) = 2 sum_ i j k <_ x , Lam ( i ) Lam ( j ) Lam ( k ) + O ( x log x ) . Equation 10.4.23 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Assertion selberg4 x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnmx𝑂1

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i x1+∞2
3 elioore x1+∞x
4 3 adantl x1+∞x
5 eliooord x1+∞1<xx<+∞
6 5 adantl x1+∞1<xx<+∞
7 6 simpld x1+∞1<x
8 4 7 rplogcld x1+∞logx+
9 2 8 rerpdivcld x1+∞2logx
10 fzfid x1+∞1xFin
11 elfznn m1xm
12 11 adantl x1+∞m1xm
13 vmacl mΛm
14 12 13 syl x1+∞m1xΛm
15 4 adantr x1+∞m1xx
16 15 12 nndivred x1+∞m1xxm
17 chpcl xmψxm
18 16 17 syl x1+∞m1xψxm
19 14 18 remulcld x1+∞m1xΛmψxm
20 12 nnrpd x1+∞m1xm+
21 20 relogcld x1+∞m1xlogm
22 19 21 remulcld x1+∞m1xΛmψxmlogm
23 10 22 fsumrecl x1+∞m=1xΛmψxmlogm
24 9 23 remulcld x1+∞2logxm=1xΛmψxmlogm
25 10 19 fsumrecl x1+∞m=1xΛmψxm
26 24 25 resubcld x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxm
27 1rp 1+
28 27 a1i x1+∞1+
29 1red x1+∞1
30 29 4 7 ltled x1+∞1x
31 4 28 30 rpgecld x1+∞x+
32 26 31 rerpdivcld x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx
33 32 recnd x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx
34 chpcl xψx
35 4 34 syl x1+∞ψx
36 31 relogcld x1+∞logx
37 35 36 remulcld x1+∞ψxlogx
38 37 25 readdcld x1+∞ψxlogx+m=1xΛmψxm
39 38 31 rerpdivcld x1+∞ψxlogx+m=1xΛmψxmx
40 39 recnd x1+∞ψxlogx+m=1xΛmψxmx
41 2 36 remulcld x1+∞2logx
42 41 recnd x1+∞2logx
43 33 40 42 addsubassd x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx-2logx=2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx-2logx
44 26 recnd x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxm
45 38 recnd x1+∞ψxlogx+m=1xΛmψxm
46 4 recnd x1+∞x
47 31 rpne0d x1+∞x0
48 44 45 46 47 divdird x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxm+ψxlogx+m=1xΛmψxmx=2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx
49 24 recnd x1+∞2logxm=1xΛmψxmlogm
50 25 recnd x1+∞m=1xΛmψxm
51 37 recnd x1+∞ψxlogx
52 49 50 51 nppcan3d x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxm+ψxlogx+m=1xΛmψxm=2logxm=1xΛmψxmlogm+ψxlogx
53 elfznn n1xmn
54 53 ad2antll x1+∞m1xn1xmn
55 vmacl nΛn
56 54 55 syl x1+∞m1xn1xmΛn
57 14 adantrr x1+∞m1xn1xmΛm
58 20 adantrr x1+∞m1xn1xmm+
59 58 relogcld x1+∞m1xn1xmlogm
60 57 59 remulcld x1+∞m1xn1xmΛmlogm
61 56 60 remulcld x1+∞m1xn1xmΛnΛmlogm
62 61 recnd x1+∞m1xn1xmΛnΛmlogm
63 4 62 fsumfldivdiag x1+∞m=1xn=1xmΛnΛmlogm=n=1xm=1xnΛnΛmlogm
64 14 recnd x1+∞m1xΛm
65 18 recnd x1+∞m1xψxm
66 21 recnd x1+∞m1xlogm
67 64 65 66 mul32d x1+∞m1xΛmψxmlogm=Λmlogmψxm
68 64 66 mulcld x1+∞m1xΛmlogm
69 68 65 mulcomd x1+∞m1xΛmlogmψxm=ψxmΛmlogm
70 chpval xmψxm=n=1xmΛn
71 16 70 syl x1+∞m1xψxm=n=1xmΛn
72 71 oveq1d x1+∞m1xψxmΛmlogm=n=1xmΛnΛmlogm
73 fzfid x1+∞m1x1xmFin
74 56 anassrs x1+∞m1xn1xmΛn
75 74 recnd x1+∞m1xn1xmΛn
76 73 68 75 fsummulc1 x1+∞m1xn=1xmΛnΛmlogm=n=1xmΛnΛmlogm
77 72 76 eqtrd x1+∞m1xψxmΛmlogm=n=1xmΛnΛmlogm
78 67 69 77 3eqtrd x1+∞m1xΛmψxmlogm=n=1xmΛnΛmlogm
79 78 sumeq2dv x1+∞m=1xΛmψxmlogm=m=1xn=1xmΛnΛmlogm
80 fzfid x1+∞n1x1xnFin
81 elfznn n1xn
82 81 adantl x1+∞n1xn
83 82 55 syl x1+∞n1xΛn
84 83 recnd x1+∞n1xΛn
85 elfznn m1xnm
86 85 adantl x1+∞n1xm1xnm
87 86 13 syl x1+∞n1xm1xnΛm
88 86 nnrpd x1+∞n1xm1xnm+
89 88 relogcld x1+∞n1xm1xnlogm
90 87 89 remulcld x1+∞n1xm1xnΛmlogm
91 90 recnd x1+∞n1xm1xnΛmlogm
92 80 84 91 fsummulc2 x1+∞n1xΛnm=1xnΛmlogm=m=1xnΛnΛmlogm
93 92 sumeq2dv x1+∞n=1xΛnm=1xnΛmlogm=n=1xm=1xnΛnΛmlogm
94 63 79 93 3eqtr4d x1+∞m=1xΛmψxmlogm=n=1xΛnm=1xnΛmlogm
95 94 oveq2d x1+∞2logxm=1xΛmψxmlogm=2logxn=1xΛnm=1xnΛmlogm
96 95 oveq1d x1+∞2logxm=1xΛmψxmlogm+ψxlogx=2logxn=1xΛnm=1xnΛmlogm+ψxlogx
97 52 96 eqtrd x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxm+ψxlogx+m=1xΛmψxm=2logxn=1xΛnm=1xnΛmlogm+ψxlogx
98 97 oveq1d x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxm+ψxlogx+m=1xΛmψxmx=2logxn=1xΛnm=1xnΛmlogm+ψxlogxx
99 48 98 eqtr3d x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx=2logxn=1xΛnm=1xnΛmlogm+ψxlogxx
100 99 oveq1d x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx-2logx=2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx
101 43 100 eqtr3d x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx-2logx=2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx
102 101 mpteq2dva x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx-2logx=x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx
103 39 41 resubcld x1+∞ψxlogx+m=1xΛmψxmx2logx
104 selberg3lem2 x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx𝑂1
105 104 a1i x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx𝑂1
106 31 ex x1+∞x+
107 106 ssrdv 1+∞+
108 selberg2 x+ψxlogx+m=1xΛmψxmx2logx𝑂1
109 108 a1i x+ψxlogx+m=1xΛmψxmx2logx𝑂1
110 107 109 o1res2 x1+∞ψxlogx+m=1xΛmψxmx2logx𝑂1
111 32 103 105 110 o1add2 x1+∞2logxm=1xΛmψxmlogmm=1xΛmψxmx+ψxlogx+m=1xΛmψxmx-2logx𝑂1
112 102 111 eqeltrrd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx𝑂1
113 80 90 fsumrecl x1+∞n1xm=1xnΛmlogm
114 83 113 remulcld x1+∞n1xΛnm=1xnΛmlogm
115 10 114 fsumrecl x1+∞n=1xΛnm=1xnΛmlogm
116 9 115 remulcld x1+∞2logxn=1xΛnm=1xnΛmlogm
117 116 37 readdcld x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx
118 117 31 rerpdivcld x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx
119 118 41 resubcld x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx
120 119 recnd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx
121 4 adantr x1+∞n1xx
122 121 82 nndivred x1+∞n1xxn
123 122 adantr x1+∞n1xm1xnxn
124 123 86 nndivred x1+∞n1xm1xnxnm
125 chpcl xnmψxnm
126 124 125 syl x1+∞n1xm1xnψxnm
127 87 126 remulcld x1+∞n1xm1xnΛmψxnm
128 80 127 fsumrecl x1+∞n1xm=1xnΛmψxnm
129 83 128 remulcld x1+∞n1xΛnm=1xnΛmψxnm
130 10 129 fsumrecl x1+∞n=1xΛnm=1xnΛmψxnm
131 9 130 remulcld x1+∞2logxn=1xΛnm=1xnΛmψxnm
132 37 131 resubcld x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnm
133 132 31 rerpdivcld x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnmx
134 133 recnd x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnmx
135 116 recnd x1+∞2logxn=1xΛnm=1xnΛmlogm
136 131 recnd x1+∞2logxn=1xΛnm=1xnΛmψxnm
137 51 135 136 pnncand x1+∞ψxlogx+2logxn=1xΛnm=1xnΛmlogm-ψxlogx2logxn=1xΛnm=1xnΛmψxnm=2logxn=1xΛnm=1xnΛmlogm+2logxn=1xΛnm=1xnΛmψxnm
138 135 51 addcomd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx=ψxlogx+2logxn=1xΛnm=1xnΛmlogm
139 138 oveq1d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx-ψxlogx2logxn=1xΛnm=1xnΛmψxnm=ψxlogx+2logxn=1xΛnm=1xnΛmlogm-ψxlogx2logxn=1xΛnm=1xnΛmψxnm
140 87 recnd x1+∞n1xm1xnΛm
141 89 recnd x1+∞n1xm1xnlogm
142 126 recnd x1+∞n1xm1xnψxnm
143 140 141 142 adddid x1+∞n1xm1xnΛmlogm+ψxnm=Λmlogm+Λmψxnm
144 143 sumeq2dv x1+∞n1xm=1xnΛmlogm+ψxnm=m=1xnΛmlogm+Λmψxnm
145 127 recnd x1+∞n1xm1xnΛmψxnm
146 80 91 145 fsumadd x1+∞n1xm=1xnΛmlogm+Λmψxnm=m=1xnΛmlogm+m=1xnΛmψxnm
147 144 146 eqtrd x1+∞n1xm=1xnΛmlogm+ψxnm=m=1xnΛmlogm+m=1xnΛmψxnm
148 147 oveq2d x1+∞n1xΛnm=1xnΛmlogm+ψxnm=Λnm=1xnΛmlogm+m=1xnΛmψxnm
149 113 recnd x1+∞n1xm=1xnΛmlogm
150 128 recnd x1+∞n1xm=1xnΛmψxnm
151 84 149 150 adddid x1+∞n1xΛnm=1xnΛmlogm+m=1xnΛmψxnm=Λnm=1xnΛmlogm+Λnm=1xnΛmψxnm
152 148 151 eqtrd x1+∞n1xΛnm=1xnΛmlogm+ψxnm=Λnm=1xnΛmlogm+Λnm=1xnΛmψxnm
153 152 sumeq2dv x1+∞n=1xΛnm=1xnΛmlogm+ψxnm=n=1xΛnm=1xnΛmlogm+Λnm=1xnΛmψxnm
154 114 recnd x1+∞n1xΛnm=1xnΛmlogm
155 129 recnd x1+∞n1xΛnm=1xnΛmψxnm
156 10 154 155 fsumadd x1+∞n=1xΛnm=1xnΛmlogm+Λnm=1xnΛmψxnm=n=1xΛnm=1xnΛmlogm+n=1xΛnm=1xnΛmψxnm
157 153 156 eqtrd x1+∞n=1xΛnm=1xnΛmlogm+ψxnm=n=1xΛnm=1xnΛmlogm+n=1xΛnm=1xnΛmψxnm
158 157 oveq2d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxnm=2logxn=1xΛnm=1xnΛmlogm+n=1xΛnm=1xnΛmψxnm
159 9 recnd x1+∞2logx
160 115 recnd x1+∞n=1xΛnm=1xnΛmlogm
161 130 recnd x1+∞n=1xΛnm=1xnΛmψxnm
162 159 160 161 adddid x1+∞2logxn=1xΛnm=1xnΛmlogm+n=1xΛnm=1xnΛmψxnm=2logxn=1xΛnm=1xnΛmlogm+2logxn=1xΛnm=1xnΛmψxnm
163 158 162 eqtrd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxnm=2logxn=1xΛnm=1xnΛmlogm+2logxn=1xΛnm=1xnΛmψxnm
164 137 139 163 3eqtr4d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx-ψxlogx2logxn=1xΛnm=1xnΛmψxnm=2logxn=1xΛnm=1xnΛmlogm+ψxnm
165 164 oveq1d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx=2logxn=1xΛnm=1xnΛmlogm+ψxnmx
166 117 recnd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx
167 51 136 subcld x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnm
168 166 167 46 47 divsubdird x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx=2logxn=1xΛnm=1xnΛmlogm+ψxlogxxψxlogx2logxn=1xΛnm=1xnΛmψxnmx
169 2cnd x1+∞2
170 89 126 readdcld x1+∞n1xm1xnlogm+ψxnm
171 87 170 remulcld x1+∞n1xm1xnΛmlogm+ψxnm
172 80 171 fsumrecl x1+∞n1xm=1xnΛmlogm+ψxnm
173 83 172 remulcld x1+∞n1xΛnm=1xnΛmlogm+ψxnm
174 10 173 fsumrecl x1+∞n=1xΛnm=1xnΛmlogm+ψxnm
175 174 recnd x1+∞n=1xΛnm=1xnΛmlogm+ψxnm
176 169 175 mulcld x1+∞2n=1xΛnm=1xnΛmlogm+ψxnm
177 36 recnd x1+∞logx
178 8 rpne0d x1+∞logx0
179 176 177 46 178 47 divdiv1d x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmlogxx=2n=1xΛnm=1xnΛmlogm+ψxnmlogxx
180 177 46 mulcomd x1+∞logxx=xlogx
181 180 oveq2d x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmlogxx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx
182 179 181 eqtrd x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmlogxx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx
183 169 175 177 178 div23d x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmlogx=2logxn=1xΛnm=1xnΛmlogm+ψxnm
184 183 oveq1d x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmlogxx=2logxn=1xΛnm=1xnΛmlogm+ψxnmx
185 31 8 rpmulcld x1+∞xlogx+
186 185 rpcnd x1+∞xlogx
187 185 rpne0d x1+∞xlogx0
188 169 175 186 187 divassd x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmxlogx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx
189 182 184 188 3eqtr3d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxnmx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx
190 165 168 189 3eqtr3d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxxψxlogx2logxn=1xΛnm=1xnΛmψxnmx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx
191 190 oveq1d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx-2logx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx2logx
192 118 recnd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx
193 192 42 134 sub32d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx-2logx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx=2logxn=1xΛnm=1xnΛmlogm+ψxlogxx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx-2logx
194 174 185 rerpdivcld x1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx
195 194 recnd x1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogx
196 169 195 177 subdid x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogx2logx
197 191 193 196 3eqtr4d x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx-2logx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx=2n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx
198 197 mpteq2dva x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx-2logx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx=x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx
199 194 36 resubcld x1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx
200 ioossre 1+∞
201 2cnd 2
202 o1const 1+∞2x1+∞2𝑂1
203 200 201 202 sylancr x1+∞2𝑂1
204 selbergb c+y1+∞i=1yΛilogi+ψyiy2logyc
205 simpl c+y1+∞i=1yΛilogi+ψyiy2logycc+
206 simpr c+y1+∞i=1yΛilogi+ψyiy2logycy1+∞i=1yΛilogi+ψyiy2logyc
207 205 206 selberg4lem1 c+y1+∞i=1yΛilogi+ψyiy2logycx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1
208 207 rexlimiva c+y1+∞i=1yΛilogi+ψyiy2logycx1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1
209 204 208 mp1i x1+∞n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1
210 2 199 203 209 o1mul2 x1+∞2n=1xΛnm=1xnΛmlogm+ψxnmxlogxlogx𝑂1
211 198 210 eqeltrd x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx-2logx-ψxlogx2logxn=1xΛnm=1xnΛmψxnmx𝑂1
212 120 134 211 o1dif x1+∞2logxn=1xΛnm=1xnΛmlogm+ψxlogxx2logx𝑂1x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnmx𝑂1
213 112 212 mpbid x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnmx𝑂1
214 213 mptru x1+∞ψxlogx2logxn=1xΛnm=1xnΛmψxnmx𝑂1