Step |
Hyp |
Ref |
Expression |
1 |
|
selberglem1.t |
|
2 |
|
fzfid |
|
3 |
|
elfznn |
|
4 |
3
|
adantl |
|
5 |
|
mucl |
|
6 |
4 5
|
syl |
|
7 |
6
|
zred |
|
8 |
7 4
|
nndivred |
|
9 |
8
|
recnd |
|
10 |
3
|
nnrpd |
|
11 |
|
rpdivcl |
|
12 |
10 11
|
sylan2 |
|
13 |
|
relogcl |
|
14 |
12 13
|
syl |
|
15 |
14
|
recnd |
|
16 |
15
|
sqcld |
|
17 |
9 16
|
mulcld |
|
18 |
2 17
|
fsumcl |
|
19 |
|
2cn |
|
20 |
19
|
a1i |
|
21 |
20 15
|
mulcld |
|
22 |
20 21
|
subcld |
|
23 |
9 22
|
mulcld |
|
24 |
2 23
|
fsumcl |
|
25 |
|
relogcl |
|
26 |
25
|
recnd |
|
27 |
|
mulcl |
|
28 |
19 26 27
|
sylancr |
|
29 |
18 24 28
|
addsubd |
|
30 |
1
|
oveq2i |
|
31 |
6
|
zcnd |
|
32 |
16 22
|
addcld |
|
33 |
4
|
nnrpd |
|
34 |
33
|
rpcnne0d |
|
35 |
|
divass |
|
36 |
|
div23 |
|
37 |
35 36
|
eqtr3d |
|
38 |
31 32 34 37
|
syl3anc |
|
39 |
9 16 22
|
adddid |
|
40 |
38 39
|
eqtrd |
|
41 |
30 40
|
eqtrid |
|
42 |
41
|
sumeq2dv |
|
43 |
2 17 23
|
fsumadd |
|
44 |
42 43
|
eqtrd |
|
45 |
44
|
oveq1d |
|
46 |
19
|
a1i |
|
47 |
9 15
|
mulcld |
|
48 |
9 47
|
subcld |
|
49 |
2 46 48
|
fsummulc2 |
|
50 |
2 9 47
|
fsumsub |
|
51 |
50
|
oveq2d |
|
52 |
20 9
|
mulcomd |
|
53 |
20 9 15
|
mul12d |
|
54 |
52 53
|
oveq12d |
|
55 |
20 9 47
|
subdid |
|
56 |
9 20 21
|
subdid |
|
57 |
54 55 56
|
3eqtr4d |
|
58 |
57
|
sumeq2dv |
|
59 |
49 51 58
|
3eqtr3d |
|
60 |
59
|
oveq2d |
|
61 |
29 45 60
|
3eqtr4d |
|
62 |
61
|
mpteq2ia |
|
63 |
|
ovexd |
|
64 |
|
ovexd |
|
65 |
|
mulog2sum |
|
66 |
65
|
a1i |
|
67 |
|
2ex |
|
68 |
67
|
a1i |
|
69 |
|
ovexd |
|
70 |
|
rpssre |
|
71 |
|
o1const |
|
72 |
70 19 71
|
mp2an |
|
73 |
72
|
a1i |
|
74 |
|
reex |
|
75 |
74 70
|
ssexi |
|
76 |
75
|
a1i |
|
77 |
|
sumex |
|
78 |
77
|
a1i |
|
79 |
|
sumex |
|
80 |
79
|
a1i |
|
81 |
|
eqidd |
|
82 |
|
eqidd |
|
83 |
76 78 80 81 82
|
offval2 |
|
84 |
|
mudivsum |
|
85 |
|
mulogsum |
|
86 |
|
o1sub |
|
87 |
84 85 86
|
mp2an |
|
88 |
83 87
|
eqeltrrdi |
|
89 |
68 69 73 88
|
o1mul2 |
|
90 |
63 64 66 89
|
o1add2 |
|
91 |
90
|
mptru |
|
92 |
62 91
|
eqeltri |
|