Metamath Proof Explorer


Theorem selberglem1

Description: Lemma for selberg . Estimation of the asymptotic part of selberglem3 . (Contributed by Mario Carneiro, 20-May-2016)

Ref Expression
Hypothesis selberglem1.t T=logxn2+2-2logxnn
Assertion selberglem1 x+n=1xμnT2logx𝑂1

Proof

Step Hyp Ref Expression
1 selberglem1.t T=logxn2+2-2logxnn
2 fzfid x+1xFin
3 elfznn n1xn
4 3 adantl x+n1xn
5 mucl nμn
6 4 5 syl x+n1xμn
7 6 zred x+n1xμn
8 7 4 nndivred x+n1xμnn
9 8 recnd x+n1xμnn
10 3 nnrpd n1xn+
11 rpdivcl x+n+xn+
12 10 11 sylan2 x+n1xxn+
13 relogcl xn+logxn
14 12 13 syl x+n1xlogxn
15 14 recnd x+n1xlogxn
16 15 sqcld x+n1xlogxn2
17 9 16 mulcld x+n1xμnnlogxn2
18 2 17 fsumcl x+n=1xμnnlogxn2
19 2cn 2
20 19 a1i x+n1x2
21 20 15 mulcld x+n1x2logxn
22 20 21 subcld x+n1x22logxn
23 9 22 mulcld x+n1xμnn22logxn
24 2 23 fsumcl x+n=1xμnn22logxn
25 relogcl x+logx
26 25 recnd x+logx
27 mulcl 2logx2logx
28 19 26 27 sylancr x+2logx
29 18 24 28 addsubd x+n=1xμnnlogxn2+n=1xμnn22logxn-2logx=n=1xμnnlogxn2-2logx+n=1xμnn22logxn
30 1 oveq2i μnT=μnlogxn2+2-2logxnn
31 6 zcnd x+n1xμn
32 16 22 addcld x+n1xlogxn2+2-2logxn
33 4 nnrpd x+n1xn+
34 33 rpcnne0d x+n1xnn0
35 divass μnlogxn2+2-2logxnnn0μnlogxn2+2-2logxnn=μnlogxn2+2-2logxnn
36 div23 μnlogxn2+2-2logxnnn0μnlogxn2+2-2logxnn=μnnlogxn2+2-2logxn
37 35 36 eqtr3d μnlogxn2+2-2logxnnn0μnlogxn2+2-2logxnn=μnnlogxn2+2-2logxn
38 31 32 34 37 syl3anc x+n1xμnlogxn2+2-2logxnn=μnnlogxn2+2-2logxn
39 9 16 22 adddid x+n1xμnnlogxn2+2-2logxn=μnnlogxn2+μnn22logxn
40 38 39 eqtrd x+n1xμnlogxn2+2-2logxnn=μnnlogxn2+μnn22logxn
41 30 40 eqtrid x+n1xμnT=μnnlogxn2+μnn22logxn
42 41 sumeq2dv x+n=1xμnT=n=1xμnnlogxn2+μnn22logxn
43 2 17 23 fsumadd x+n=1xμnnlogxn2+μnn22logxn=n=1xμnnlogxn2+n=1xμnn22logxn
44 42 43 eqtrd x+n=1xμnT=n=1xμnnlogxn2+n=1xμnn22logxn
45 44 oveq1d x+n=1xμnT2logx=n=1xμnnlogxn2+n=1xμnn22logxn-2logx
46 19 a1i x+2
47 9 15 mulcld x+n1xμnnlogxn
48 9 47 subcld x+n1xμnnμnnlogxn
49 2 46 48 fsummulc2 x+2n=1xμnnμnnlogxn=n=1x2μnnμnnlogxn
50 2 9 47 fsumsub x+n=1xμnnμnnlogxn=n=1xμnnn=1xμnnlogxn
51 50 oveq2d x+2n=1xμnnμnnlogxn=2n=1xμnnn=1xμnnlogxn
52 20 9 mulcomd x+n1x2μnn=μnn2
53 20 9 15 mul12d x+n1x2μnnlogxn=μnn2logxn
54 52 53 oveq12d x+n1x2μnn2μnnlogxn=μnn2μnn2logxn
55 20 9 47 subdid x+n1x2μnnμnnlogxn=2μnn2μnnlogxn
56 9 20 21 subdid x+n1xμnn22logxn=μnn2μnn2logxn
57 54 55 56 3eqtr4d x+n1x2μnnμnnlogxn=μnn22logxn
58 57 sumeq2dv x+n=1x2μnnμnnlogxn=n=1xμnn22logxn
59 49 51 58 3eqtr3d x+2n=1xμnnn=1xμnnlogxn=n=1xμnn22logxn
60 59 oveq2d x+n=1xμnnlogxn2-2logx+2n=1xμnnn=1xμnnlogxn=n=1xμnnlogxn2-2logx+n=1xμnn22logxn
61 29 45 60 3eqtr4d x+n=1xμnT2logx=n=1xμnnlogxn2-2logx+2n=1xμnnn=1xμnnlogxn
62 61 mpteq2ia x+n=1xμnT2logx=x+n=1xμnnlogxn2-2logx+2n=1xμnnn=1xμnnlogxn
63 ovexd x+n=1xμnnlogxn22logxV
64 ovexd x+2n=1xμnnn=1xμnnlogxnV
65 mulog2sum x+n=1xμnnlogxn22logx𝑂1
66 65 a1i x+n=1xμnnlogxn22logx𝑂1
67 2ex 2V
68 67 a1i x+2V
69 ovexd x+n=1xμnnn=1xμnnlogxnV
70 rpssre +
71 o1const +2x+2𝑂1
72 70 19 71 mp2an x+2𝑂1
73 72 a1i x+2𝑂1
74 reex V
75 74 70 ssexi +V
76 75 a1i +V
77 sumex n=1xμnnV
78 77 a1i x+n=1xμnnV
79 sumex n=1xμnnlogxnV
80 79 a1i x+n=1xμnnlogxnV
81 eqidd x+n=1xμnn=x+n=1xμnn
82 eqidd x+n=1xμnnlogxn=x+n=1xμnnlogxn
83 76 78 80 81 82 offval2 x+n=1xμnnfx+n=1xμnnlogxn=x+n=1xμnnn=1xμnnlogxn
84 mudivsum x+n=1xμnn𝑂1
85 mulogsum x+n=1xμnnlogxn𝑂1
86 o1sub x+n=1xμnn𝑂1x+n=1xμnnlogxn𝑂1x+n=1xμnnfx+n=1xμnnlogxn𝑂1
87 84 85 86 mp2an x+n=1xμnnfx+n=1xμnnlogxn𝑂1
88 83 87 eqeltrrdi x+n=1xμnnn=1xμnnlogxn𝑂1
89 68 69 73 88 o1mul2 x+2n=1xμnnn=1xμnnlogxn𝑂1
90 63 64 66 89 o1add2 x+n=1xμnnlogxn2-2logx+2n=1xμnnn=1xμnnlogxn𝑂1
91 90 mptru x+n=1xμnnlogxn2-2logx+2n=1xμnnn=1xμnnlogxn𝑂1
92 62 91 eqeltri x+n=1xμnT2logx𝑂1