| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oldssno |  | 
						
							| 2 | 1 | sseli |  | 
						
							| 3 | 2 | 3ad2ant2 |  | 
						
							| 4 |  | simp1l1 |  | 
						
							| 5 |  | simp1l2 |  | 
						
							| 6 |  | simp3 |  | 
						
							| 7 |  | simp1r |  | 
						
							| 8 | 3 4 5 6 7 | slttrd |  | 
						
							| 9 | 8 | 3exp |  | 
						
							| 10 | 9 | imdistand |  | 
						
							| 11 |  | fveq2 |  | 
						
							| 12 | 11 | 3ad2ant3 |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | eleq2d |  | 
						
							| 15 | 14 | anbi1d |  | 
						
							| 16 | 10 15 | sylibd |  | 
						
							| 17 |  | leftval |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 | 18 | eleq2d |  | 
						
							| 20 |  | rabid |  | 
						
							| 21 | 19 20 | bitrdi |  | 
						
							| 22 |  | leftval |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 | 23 | eleq2d |  | 
						
							| 25 |  | rabid |  | 
						
							| 26 | 24 25 | bitrdi |  | 
						
							| 27 | 16 21 26 | 3imtr4d |  | 
						
							| 28 | 27 | ssrdv |  | 
						
							| 29 |  | sltirr |  | 
						
							| 30 | 29 | 3ad2ant2 |  | 
						
							| 31 |  | breq1 |  | 
						
							| 32 | 31 | notbid |  | 
						
							| 33 | 30 32 | syl5ibrcom |  | 
						
							| 34 | 33 | con2d |  | 
						
							| 35 | 34 | imp |  | 
						
							| 36 |  | simpr |  | 
						
							| 37 |  | lruneq |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 38 | adantr |  | 
						
							| 40 | 39 36 | difeq12d |  | 
						
							| 41 |  | difundir |  | 
						
							| 42 |  | difid |  | 
						
							| 43 | 42 | uneq1i |  | 
						
							| 44 |  | 0un |  | 
						
							| 45 | 41 43 44 | 3eqtri |  | 
						
							| 46 |  | incom |  | 
						
							| 47 |  | lltropt |  | 
						
							| 48 |  | ssltdisj |  | 
						
							| 49 | 47 48 | mp1i |  | 
						
							| 50 | 46 49 | eqtr3id |  | 
						
							| 51 |  | disjdif2 |  | 
						
							| 52 | 50 51 | syl |  | 
						
							| 53 | 45 52 | eqtrid |  | 
						
							| 54 |  | difundir |  | 
						
							| 55 |  | difid |  | 
						
							| 56 | 55 | uneq1i |  | 
						
							| 57 |  | 0un |  | 
						
							| 58 | 54 56 57 | 3eqtri |  | 
						
							| 59 |  | incom |  | 
						
							| 60 |  | lltropt |  | 
						
							| 61 |  | ssltdisj |  | 
						
							| 62 | 60 61 | mp1i |  | 
						
							| 63 | 59 62 | eqtr3id |  | 
						
							| 64 |  | disjdif2 |  | 
						
							| 65 | 63 64 | syl |  | 
						
							| 66 | 58 65 | eqtrid |  | 
						
							| 67 | 40 53 66 | 3eqtr3d |  | 
						
							| 68 | 36 67 | oveq12d |  | 
						
							| 69 |  | simpll1 |  | 
						
							| 70 |  | lrcut |  | 
						
							| 71 | 69 70 | syl |  | 
						
							| 72 |  | simpll2 |  | 
						
							| 73 |  | lrcut |  | 
						
							| 74 | 72 73 | syl |  | 
						
							| 75 | 68 71 74 | 3eqtr3d |  | 
						
							| 76 | 35 75 | mtand |  | 
						
							| 77 |  | dfpss2 |  | 
						
							| 78 | 28 76 77 | sylanbrc |  | 
						
							| 79 | 78 | ex |  | 
						
							| 80 |  | dfpss3 |  | 
						
							| 81 |  | ssdif0 |  | 
						
							| 82 | 81 | necon3bbii |  | 
						
							| 83 |  | n0 |  | 
						
							| 84 | 82 83 | bitri |  | 
						
							| 85 |  | eldif |  | 
						
							| 86 | 22 | a1i |  | 
						
							| 87 | 86 | eleq2d |  | 
						
							| 88 | 87 25 | bitrdi |  | 
						
							| 89 | 17 | a1i |  | 
						
							| 90 | 89 | eleq2d |  | 
						
							| 91 | 90 20 | bitrdi |  | 
						
							| 92 | 91 | notbid |  | 
						
							| 93 |  | ianor |  | 
						
							| 94 | 92 93 | bitrdi |  | 
						
							| 95 | 88 94 | bi2anan9r |  | 
						
							| 96 | 95 | 3adant3 |  | 
						
							| 97 |  | simprl |  | 
						
							| 98 |  | simpl3 |  | 
						
							| 99 | 98 | fveq2d |  | 
						
							| 100 | 97 99 | eleqtrrd |  | 
						
							| 101 | 100 | pm2.24d |  | 
						
							| 102 |  | simpll1 |  | 
						
							| 103 |  | oldssno |  | 
						
							| 104 | 103 97 | sselid |  | 
						
							| 105 | 104 | adantr |  | 
						
							| 106 |  | simpll2 |  | 
						
							| 107 |  | simpl1 |  | 
						
							| 108 |  | slenlt |  | 
						
							| 109 | 107 104 108 | syl2anc |  | 
						
							| 110 | 109 | biimpar |  | 
						
							| 111 |  | simplrr |  | 
						
							| 112 | 102 105 106 110 111 | slelttrd |  | 
						
							| 113 | 112 | ex |  | 
						
							| 114 | 101 113 | jaod |  | 
						
							| 115 | 114 | expimpd |  | 
						
							| 116 | 96 115 | sylbid |  | 
						
							| 117 | 85 116 | biimtrid |  | 
						
							| 118 | 117 | exlimdv |  | 
						
							| 119 | 84 118 | biimtrid |  | 
						
							| 120 | 119 | adantld |  | 
						
							| 121 | 80 120 | biimtrid |  | 
						
							| 122 | 79 121 | impbid |  |