Metamath Proof Explorer


Theorem smfaddlem1

Description: Given the sum of two functions, the preimage of an unbounded below, open interval, expressed as the countable union of intersections of preimages of both functions. Proposition 121E (b) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfaddlem1.x x φ
smfaddlem1.b φ x A B
smfaddlem1.d φ x C D
smfaddlem1.r φ R
smfaddlem1.k K = p q | p + q < R
Assertion smfaddlem1 φ x A C | B + D < R = p q K p x A C | B < p D < q

Proof

Step Hyp Ref Expression
1 smfaddlem1.x x φ
2 smfaddlem1.b φ x A B
3 smfaddlem1.d φ x C D
4 smfaddlem1.r φ R
5 smfaddlem1.k K = p q | p + q < R
6 simpl φ x x A C | B + D < R φ
7 inss1 A C A
8 rabid x x A C | B + D < R x A C B + D < R
9 8 simplbi x x A C | B + D < R x A C
10 7 9 sseldi x x A C | B + D < R x A
11 10 adantl φ x x A C | B + D < R x A
12 6 11 2 syl2anc φ x x A C | B + D < R B
13 12 rexrd φ x x A C | B + D < R B *
14 4 adantr φ x x A C | B + D < R R
15 elinel2 x A C x C
16 15 adantl φ x A C x C
17 16 3 syldan φ x A C D
18 9 17 sylan2 φ x x A C | B + D < R D
19 14 18 resubcld φ x x A C | B + D < R R D
20 19 rexrd φ x x A C | B + D < R R D *
21 8 simprbi x x A C | B + D < R B + D < R
22 21 adantl φ x x A C | B + D < R B + D < R
23 12 18 14 ltaddsubd φ x x A C | B + D < R B + D < R B < R D
24 22 23 mpbid φ x x A C | B + D < R B < R D
25 13 20 24 qelioo φ x x A C | B + D < R p p B R D
26 18 rexrd φ x x A C | B + D < R D *
27 26 ad2antrr φ x x A C | B + D < R p p B R D D *
28 4 ad2antrr φ x x A C | B + D < R p R
29 qre p p
30 29 adantl φ x x A C | B + D < R p p
31 28 30 resubcld φ x x A C | B + D < R p R p
32 31 rexrd φ x x A C | B + D < R p R p *
33 32 adantr φ x x A C | B + D < R p p B R D R p *
34 elioore p B R D p
35 34 adantl φ x x A C | B + D < R p B R D p
36 14 adantr φ x x A C | B + D < R p B R D R
37 18 adantr φ x x A C | B + D < R p B R D D
38 13 adantr φ x x A C | B + D < R p B R D B *
39 20 adantr φ x x A C | B + D < R p B R D R D *
40 simpr φ x x A C | B + D < R p B R D p B R D
41 iooltub B * R D * p B R D p < R D
42 38 39 40 41 syl3anc φ x x A C | B + D < R p B R D p < R D
43 35 36 37 42 ltsub13d φ x x A C | B + D < R p B R D D < R p
44 43 adantlr φ x x A C | B + D < R p p B R D D < R p
45 27 33 44 qelioo φ x x A C | B + D < R p p B R D q q D R p
46 nfv q φ x x A C | B + D < R p p B R D
47 nfre1 q q K p x x A C | B < p D < q
48 simplr φ x x A C | B + D < R p p B R D q q D R p q
49 elioore q D R p q
50 49 3ad2ant3 φ x x A C | B + D < R p B R D q D R p q
51 36 3adant3 φ x x A C | B + D < R p B R D q D R p R
52 34 3ad2ant2 φ x x A C | B + D < R p B R D q D R p p
53 51 52 resubcld φ x x A C | B + D < R p B R D q D R p R p
54 26 3ad2ant1 φ x x A C | B + D < R p B R D q D R p D *
55 53 rexrd φ x x A C | B + D < R p B R D q D R p R p *
56 simp3 φ x x A C | B + D < R p B R D q D R p q D R p
57 iooltub D * R p * q D R p q < R p
58 54 55 56 57 syl3anc φ x x A C | B + D < R p B R D q D R p q < R p
59 50 53 52 58 ltadd2dd φ x x A C | B + D < R p B R D q D R p p + q < p + R - p
60 52 recnd φ x x A C | B + D < R p B R D q D R p p
61 51 recnd φ x x A C | B + D < R p B R D q D R p R
62 60 61 pncan3d φ x x A C | B + D < R p B R D q D R p p + R - p = R
63 59 62 breqtrd φ x x A C | B + D < R p B R D q D R p p + q < R
64 63 ad5ant135 φ x x A C | B + D < R p p B R D q q D R p p + q < R
65 48 64 jca φ x x A C | B + D < R p p B R D q q D R p q p + q < R
66 rabid q q | p + q < R q p + q < R
67 65 66 sylibr φ x x A C | B + D < R p p B R D q q D R p q q | p + q < R
68 id p p
69 qex V
70 69 rabex q | p + q < R V
71 70 a1i p q | p + q < R V
72 5 fvmpt2 p q | p + q < R V K p = q | p + q < R
73 68 71 72 syl2anc p K p = q | p + q < R
74 73 ad4antlr φ x x A C | B + D < R p p B R D q q D R p K p = q | p + q < R
75 67 74 eleqtrrd φ x x A C | B + D < R p p B R D q q D R p q K p
76 simp-5r φ x x A C | B + D < R p p B R D q q D R p x x A C | B + D < R
77 76 9 syl φ x x A C | B + D < R p p B R D q q D R p x A C
78 ioogtlb B * R D * p B R D B < p
79 38 39 40 78 syl3anc φ x x A C | B + D < R p B R D B < p
80 79 ad5ant13 φ x x A C | B + D < R p p B R D q q D R p B < p
81 26 ad2antrr φ x x A C | B + D < R p q D R p D *
82 32 adantr φ x x A C | B + D < R p q D R p R p *
83 simpr φ x x A C | B + D < R p q D R p q D R p
84 ioogtlb D * R p * q D R p D < q
85 81 82 83 84 syl3anc φ x x A C | B + D < R p q D R p D < q
86 85 ad4ant14 φ x x A C | B + D < R p p B R D q q D R p D < q
87 77 80 86 jca32 φ x x A C | B + D < R p p B R D q q D R p x A C B < p D < q
88 rabid x x A C | B < p D < q x A C B < p D < q
89 87 88 sylibr φ x x A C | B + D < R p p B R D q q D R p x x A C | B < p D < q
90 rspe q K p x x A C | B < p D < q q K p x x A C | B < p D < q
91 75 89 90 syl2anc φ x x A C | B + D < R p p B R D q q D R p q K p x x A C | B < p D < q
92 91 ex φ x x A C | B + D < R p p B R D q q D R p q K p x x A C | B < p D < q
93 92 ex φ x x A C | B + D < R p p B R D q q D R p q K p x x A C | B < p D < q
94 46 47 93 rexlimd φ x x A C | B + D < R p p B R D q q D R p q K p x x A C | B < p D < q
95 45 94 mpd φ x x A C | B + D < R p p B R D q K p x x A C | B < p D < q
96 eliun x q K p x A C | B < p D < q q K p x x A C | B < p D < q
97 95 96 sylibr φ x x A C | B + D < R p p B R D x q K p x A C | B < p D < q
98 97 ex φ x x A C | B + D < R p p B R D x q K p x A C | B < p D < q
99 98 reximdva φ x x A C | B + D < R p p B R D p x q K p x A C | B < p D < q
100 25 99 mpd φ x x A C | B + D < R p x q K p x A C | B < p D < q
101 eliun x p q K p x A C | B < p D < q p x q K p x A C | B < p D < q
102 100 101 sylibr φ x x A C | B + D < R x p q K p x A C | B < p D < q
103 102 ex φ x x A C | B + D < R x p q K p x A C | B < p D < q
104 96 rexbii p x q K p x A C | B < p D < q p q K p x x A C | B < p D < q
105 101 104 bitri x p q K p x A C | B < p D < q p q K p x x A C | B < p D < q
106 105 biimpi x p q K p x A C | B < p D < q p q K p x x A C | B < p D < q
107 106 adantl φ x p q K p x A C | B < p D < q p q K p x x A C | B < p D < q
108 88 biimpi x x A C | B < p D < q x A C B < p D < q
109 108 simpld x x A C | B < p D < q x A C
110 109 3ad2ant3 φ p q K p x x A C | B < p D < q x A C
111 elinel1 x A C x A
112 111 adantl φ x A C x A
113 112 2 syldan φ x A C B
114 109 113 sylan2 φ x x A C | B < p D < q B
115 114 3adant2 φ p q K p x x A C | B < p D < q B
116 109 17 sylan2 φ x x A C | B < p D < q D
117 116 3adant2 φ p q K p x x A C | B < p D < q D
118 115 117 readdcld φ p q K p x x A C | B < p D < q B + D
119 simp2l φ p q K p x x A C | B < p D < q p
120 119 29 syl φ p q K p x x A C | B < p D < q p
121 ssrab2 q | p + q < R
122 simpr p q K p q K p
123 73 adantr p q K p K p = q | p + q < R
124 122 123 eleqtrd p q K p q q | p + q < R
125 121 124 sseldi p q K p q
126 125 3ad2ant2 φ p q K p x x A C | B < p D < q q
127 29 ssriv
128 127 sseli q q
129 126 128 syl φ p q K p x x A C | B < p D < q q
130 120 129 readdcld φ p q K p x x A C | B < p D < q p + q
131 4 3ad2ant1 φ p q K p x x A C | B < p D < q R
132 108 simprld x x A C | B < p D < q B < p
133 132 3ad2ant3 φ p q K p x x A C | B < p D < q B < p
134 108 simprrd x x A C | B < p D < q D < q
135 134 3ad2ant3 φ p q K p x x A C | B < p D < q D < q
136 115 117 120 129 133 135 ltadd12dd φ p q K p x x A C | B < p D < q B + D < p + q
137 rabidim2 q q | p + q < R p + q < R
138 124 137 syl p q K p p + q < R
139 138 3ad2ant2 φ p q K p x x A C | B < p D < q p + q < R
140 118 130 131 136 139 lttrd φ p q K p x x A C | B < p D < q B + D < R
141 110 140 jca φ p q K p x x A C | B < p D < q x A C B + D < R
142 141 8 sylibr φ p q K p x x A C | B < p D < q x x A C | B + D < R
143 142 3exp φ p q K p x x A C | B < p D < q x x A C | B + D < R
144 143 rexlimdvv φ p q K p x x A C | B < p D < q x x A C | B + D < R
145 144 adantr φ x p q K p x A C | B < p D < q p q K p x x A C | B < p D < q x x A C | B + D < R
146 107 145 mpd φ x p q K p x A C | B < p D < q x x A C | B + D < R
147 146 ex φ x p q K p x A C | B < p D < q x x A C | B + D < R
148 103 147 impbid φ x x A C | B + D < R x p q K p x A C | B < p D < q
149 1 148 alrimi φ x x x A C | B + D < R x p q K p x A C | B < p D < q
150 nfrab1 _ x x A C | B + D < R
151 nfcv _ x
152 nfcv _ x K p
153 nfrab1 _ x x A C | B < p D < q
154 152 153 nfiun _ x q K p x A C | B < p D < q
155 151 154 nfiun _ x p q K p x A C | B < p D < q
156 150 155 cleqf x A C | B + D < R = p q K p x A C | B < p D < q x x x A C | B + D < R x p q K p x A C | B < p D < q
157 149 156 sylibr φ x A C | B + D < R = p q K p x A C | B < p D < q