Step |
Hyp |
Ref |
Expression |
1 |
|
smfaddlem1.x |
|
2 |
|
smfaddlem1.b |
|
3 |
|
smfaddlem1.d |
|
4 |
|
smfaddlem1.r |
|
5 |
|
smfaddlem1.k |
|
6 |
|
simpl |
|
7 |
|
inss1 |
|
8 |
|
rabid |
|
9 |
8
|
simplbi |
|
10 |
7 9
|
sselid |
|
11 |
10
|
adantl |
|
12 |
6 11 2
|
syl2anc |
|
13 |
12
|
rexrd |
|
14 |
4
|
adantr |
|
15 |
|
elinel2 |
|
16 |
15
|
adantl |
|
17 |
16 3
|
syldan |
|
18 |
9 17
|
sylan2 |
|
19 |
14 18
|
resubcld |
|
20 |
19
|
rexrd |
|
21 |
8
|
simprbi |
|
22 |
21
|
adantl |
|
23 |
12 18 14
|
ltaddsubd |
|
24 |
22 23
|
mpbid |
|
25 |
13 20 24
|
qelioo |
|
26 |
18
|
rexrd |
|
27 |
26
|
ad2antrr |
|
28 |
4
|
ad2antrr |
|
29 |
|
qre |
|
30 |
29
|
adantl |
|
31 |
28 30
|
resubcld |
|
32 |
31
|
rexrd |
|
33 |
32
|
adantr |
|
34 |
|
elioore |
|
35 |
34
|
adantl |
|
36 |
14
|
adantr |
|
37 |
18
|
adantr |
|
38 |
13
|
adantr |
|
39 |
20
|
adantr |
|
40 |
|
simpr |
|
41 |
|
iooltub |
|
42 |
38 39 40 41
|
syl3anc |
|
43 |
35 36 37 42
|
ltsub13d |
|
44 |
43
|
adantlr |
|
45 |
27 33 44
|
qelioo |
|
46 |
|
nfv |
|
47 |
|
nfre1 |
|
48 |
|
simplr |
|
49 |
|
elioore |
|
50 |
49
|
3ad2ant3 |
|
51 |
36
|
3adant3 |
|
52 |
34
|
3ad2ant2 |
|
53 |
51 52
|
resubcld |
|
54 |
26
|
3ad2ant1 |
|
55 |
53
|
rexrd |
|
56 |
|
simp3 |
|
57 |
|
iooltub |
|
58 |
54 55 56 57
|
syl3anc |
|
59 |
50 53 52 58
|
ltadd2dd |
|
60 |
52
|
recnd |
|
61 |
51
|
recnd |
|
62 |
60 61
|
pncan3d |
|
63 |
59 62
|
breqtrd |
|
64 |
63
|
ad5ant135 |
|
65 |
48 64
|
jca |
|
66 |
|
rabid |
|
67 |
65 66
|
sylibr |
|
68 |
|
id |
|
69 |
|
qex |
|
70 |
69
|
rabex |
|
71 |
70
|
a1i |
|
72 |
5
|
fvmpt2 |
|
73 |
68 71 72
|
syl2anc |
|
74 |
73
|
ad4antlr |
|
75 |
67 74
|
eleqtrrd |
|
76 |
|
simp-5r |
|
77 |
76 9
|
syl |
|
78 |
|
ioogtlb |
|
79 |
38 39 40 78
|
syl3anc |
|
80 |
79
|
ad5ant13 |
|
81 |
26
|
ad2antrr |
|
82 |
32
|
adantr |
|
83 |
|
simpr |
|
84 |
|
ioogtlb |
|
85 |
81 82 83 84
|
syl3anc |
|
86 |
85
|
ad4ant14 |
|
87 |
77 80 86
|
jca32 |
|
88 |
|
rabid |
|
89 |
87 88
|
sylibr |
|
90 |
|
rspe |
|
91 |
75 89 90
|
syl2anc |
|
92 |
91
|
ex |
|
93 |
92
|
ex |
|
94 |
46 47 93
|
rexlimd |
|
95 |
45 94
|
mpd |
|
96 |
|
eliun |
|
97 |
95 96
|
sylibr |
|
98 |
97
|
ex |
|
99 |
98
|
reximdva |
|
100 |
25 99
|
mpd |
|
101 |
|
eliun |
|
102 |
100 101
|
sylibr |
|
103 |
102
|
ex |
|
104 |
96
|
rexbii |
|
105 |
101 104
|
bitri |
|
106 |
105
|
biimpi |
|
107 |
106
|
adantl |
|
108 |
88
|
biimpi |
|
109 |
108
|
simpld |
|
110 |
109
|
3ad2ant3 |
|
111 |
|
elinel1 |
|
112 |
111
|
adantl |
|
113 |
112 2
|
syldan |
|
114 |
109 113
|
sylan2 |
|
115 |
114
|
3adant2 |
|
116 |
109 17
|
sylan2 |
|
117 |
116
|
3adant2 |
|
118 |
115 117
|
readdcld |
|
119 |
|
simp2l |
|
120 |
119 29
|
syl |
|
121 |
|
ssrab2 |
|
122 |
|
simpr |
|
123 |
73
|
adantr |
|
124 |
122 123
|
eleqtrd |
|
125 |
121 124
|
sselid |
|
126 |
125
|
3ad2ant2 |
|
127 |
29
|
ssriv |
|
128 |
127
|
sseli |
|
129 |
126 128
|
syl |
|
130 |
120 129
|
readdcld |
|
131 |
4
|
3ad2ant1 |
|
132 |
108
|
simprld |
|
133 |
132
|
3ad2ant3 |
|
134 |
108
|
simprrd |
|
135 |
134
|
3ad2ant3 |
|
136 |
115 117 120 129 133 135
|
ltadd12dd |
|
137 |
|
rabidim2 |
|
138 |
124 137
|
syl |
|
139 |
138
|
3ad2ant2 |
|
140 |
118 130 131 136 139
|
lttrd |
|
141 |
110 140
|
jca |
|
142 |
141 8
|
sylibr |
|
143 |
142
|
3exp |
|
144 |
143
|
rexlimdvv |
|
145 |
144
|
adantr |
|
146 |
107 145
|
mpd |
|
147 |
146
|
ex |
|
148 |
103 147
|
impbid |
|
149 |
1 148
|
alrimi |
|
150 |
|
nfrab1 |
|
151 |
|
nfcv |
|
152 |
|
nfcv |
|
153 |
|
nfrab1 |
|
154 |
152 153
|
nfiun |
|
155 |
151 154
|
nfiun |
|
156 |
150 155
|
cleqf |
|
157 |
149 156
|
sylibr |
|