Metamath Proof Explorer


Theorem sticksstones2

Description: The range function on strictly monotone functions with finite domain and codomain is an injective mapping onto K -elemental sets. (Contributed by metakunt, 27-Sep-2024)

Ref Expression
Hypotheses sticksstones2.1 φN0
sticksstones2.2 φK0
sticksstones2.3 B=a𝒫1N|a=K
sticksstones2.4 A=f|f:1K1Nx1Ky1Kx<yfx<fy
sticksstones2.5 F=zAranz
Assertion sticksstones2 φF:A1-1B

Proof

Step Hyp Ref Expression
1 sticksstones2.1 φN0
2 sticksstones2.2 φK0
3 sticksstones2.3 B=a𝒫1N|a=K
4 sticksstones2.4 A=f|f:1K1Nx1Ky1Kx<yfx<fy
5 sticksstones2.5 F=zAranz
6 fveqeq2 a=ranza=Kranz=K
7 fzfid φzA1NFin
8 eleq1w f=zfAzA
9 feq1 f=zf:1K1Nz:1K1N
10 fveq1 f=zfx=zx
11 fveq1 f=zfy=zy
12 10 11 breq12d f=zfx<fyzx<zy
13 12 imbi2d f=zx<yfx<fyx<yzx<zy
14 13 ralbidv f=zy1Kx<yfx<fyy1Kx<yzx<zy
15 14 ralbidv f=zx1Ky1Kx<yfx<fyx1Ky1Kx<yzx<zy
16 9 15 anbi12d f=zf:1K1Nx1Ky1Kx<yfx<fyz:1K1Nx1Ky1Kx<yzx<zy
17 8 16 bibi12d f=zfAf:1K1Nx1Ky1Kx<yfx<fyzAz:1K1Nx1Ky1Kx<yzx<zy
18 eqabb A=f|f:1K1Nx1Ky1Kx<yfx<fyffAf:1K1Nx1Ky1Kx<yfx<fy
19 4 18 mpbi ffAf:1K1Nx1Ky1Kx<yfx<fy
20 19 spi fAf:1K1Nx1Ky1Kx<yfx<fy
21 17 20 chvarvv zAz:1K1Nx1Ky1Kx<yzx<zy
22 21 biimpi zAz:1K1Nx1Ky1Kx<yzx<zy
23 22 adantl φzAz:1K1Nx1Ky1Kx<yzx<zy
24 23 simpld φzAz:1K1N
25 24 frnd φzAranz1N
26 7 25 sselpwd φzAranz𝒫1N
27 24 ffnd φzAzFn1K
28 hashfn zFn1Kz=1K
29 27 28 syl φzAz=1K
30 2 adantr φzAK0
31 hashfz1 K01K=K
32 30 31 syl φzA1K=K
33 29 32 eqtrd φzAz=K
34 33 eqcomd φzAK=z
35 fzfid φzA1KFin
36 elfznn a1Ka
37 36 3ad2ant3 φzAa1Ka
38 37 nnred φzAa1Ka
39 38 adantr φzAa1Kb1Ka
40 elfznn b1Kb
41 40 nnred b1Kb
42 41 adantl φzAa1Kb1Kb
43 lttri2 ababa<bb<a
44 39 42 43 syl2anc φzAa1Kb1Kaba<bb<a
45 24 3adant3 φzAa1Kz:1K1N
46 simp3 φzAa1Ka1K
47 45 46 ffvelcdmd φzAa1Kza1N
48 47 adantr φzAa1Kb1Kza1N
49 48 adantr φzAa1Kb1Ka<bza1N
50 elfznn za1Nza
51 49 50 syl φzAa1Kb1Ka<bza
52 51 nnred φzAa1Kb1Ka<bza
53 23 simprd φzAx1Ky1Kx<yzx<zy
54 53 3adant3 φzAa1Kx1Ky1Kx<yzx<zy
55 54 adantr φzAa1Kb1Kx1Ky1Kx<yzx<zy
56 46 adantr φzAa1Kb1Ka1K
57 simpr φzAa1Kb1Kb1K
58 breq1 x=ax<ya<y
59 fveq2 x=azx=za
60 59 breq1d x=azx<zyza<zy
61 58 60 imbi12d x=ax<yzx<zya<yza<zy
62 breq2 y=ba<ya<b
63 fveq2 y=bzy=zb
64 63 breq2d y=bza<zyza<zb
65 62 64 imbi12d y=ba<yza<zya<bza<zb
66 61 65 rspc2v a1Kb1Kx1Ky1Kx<yzx<zya<bza<zb
67 56 57 66 syl2anc φzAa1Kb1Kx1Ky1Kx<yzx<zya<bza<zb
68 55 67 mpd φzAa1Kb1Ka<bza<zb
69 68 imp φzAa1Kb1Ka<bza<zb
70 52 69 ltned φzAa1Kb1Ka<bzazb
71 45 ffvelcdmda φzAa1Kb1Kzb1N
72 elfznn zb1Nzb
73 71 72 syl φzAa1Kb1Kzb
74 73 nnred φzAa1Kb1Kzb
75 74 adantr φzAa1Kb1Kb<azb
76 breq1 x=bx<yb<y
77 fveq2 x=bzx=zb
78 77 breq1d x=bzx<zyzb<zy
79 76 78 imbi12d x=bx<yzx<zyb<yzb<zy
80 breq2 y=ab<yb<a
81 fveq2 y=azy=za
82 81 breq2d y=azb<zyzb<za
83 80 82 imbi12d y=ab<yzb<zyb<azb<za
84 79 83 rspc2v b1Ka1Kx1Ky1Kx<yzx<zyb<azb<za
85 57 56 84 syl2anc φzAa1Kb1Kx1Ky1Kx<yzx<zyb<azb<za
86 55 85 mpd φzAa1Kb1Kb<azb<za
87 86 imp φzAa1Kb1Kb<azb<za
88 75 87 ltned φzAa1Kb1Kb<azbza
89 88 necomd φzAa1Kb1Kb<azazb
90 70 89 jaodan φzAa1Kb1Ka<bb<azazb
91 90 ex φzAa1Kb1Ka<bb<azazb
92 44 91 sylbid φzAa1Kb1Kabzazb
93 92 necon4d φzAa1Kb1Kza=zba=b
94 93 ralrimiva φzAa1Kb1Kza=zba=b
95 94 3expa φzAa1Kb1Kza=zba=b
96 95 ralrimiva φzAa1Kb1Kza=zba=b
97 24 96 jca φzAz:1K1Na1Kb1Kza=zba=b
98 dff13 z:1K1-11Nz:1K1Na1Kb1Kza=zba=b
99 97 98 sylibr φzAz:1K1-11N
100 hashf1rn 1KFinz:1K1-11Nz=ranz
101 35 99 100 syl2anc φzAz=ranz
102 34 101 eqtrd φzAK=ranz
103 102 eqcomd φzAranz=K
104 6 26 103 elrabd φzAranza𝒫1N|a=K
105 3 eleq2i ranzBranza𝒫1N|a=K
106 105 a1i φzAranzBranza𝒫1N|a=K
107 104 106 mpbird φzAranzB
108 107 5 fmptd φF:AB
109 1 3ad2ant1 φiAjAN0
110 109 adantr φiAjAijN0
111 2 3ad2ant1 φiAjAK0
112 111 adantr φiAjAijK0
113 simpl2 φiAjAijiA
114 simpl3 φiAjAijjA
115 simpr φiAjAijij
116 fveq2 r=sir=is
117 fveq2 r=sjr=js
118 116 117 neeq12d r=sirjrisjs
119 118 cbvrabv r1K|irjr=s1K|isjs
120 119 infeq1i supr1K|irjr<=sups1K|isjs<
121 110 112 4 113 114 115 120 sticksstones1 φiAjAijraniranj
122 5 a1i φiAjAijF=zAranz
123 simpr φiAjAijz=iz=i
124 123 rneqd φiAjAijz=iranz=rani
125 fzfid φiAjAij1NFin
126 eleq1w f=ifAiA
127 feq1 f=if:1K1Ni:1K1N
128 fveq1 f=ifx=ix
129 fveq1 f=ify=iy
130 128 129 breq12d f=ifx<fyix<iy
131 130 imbi2d f=ix<yfx<fyx<yix<iy
132 131 2ralbidv f=ix1Ky1Kx<yfx<fyx1Ky1Kx<yix<iy
133 127 132 anbi12d f=if:1K1Nx1Ky1Kx<yfx<fyi:1K1Nx1Ky1Kx<yix<iy
134 126 133 bibi12d f=ifAf:1K1Nx1Ky1Kx<yfx<fyiAi:1K1Nx1Ky1Kx<yix<iy
135 134 20 chvarvv iAi:1K1Nx1Ky1Kx<yix<iy
136 135 biimpi iAi:1K1Nx1Ky1Kx<yix<iy
137 136 adantl φiAi:1K1Nx1Ky1Kx<yix<iy
138 137 simpld φiAi:1K1N
139 138 3adant3 φiAjAi:1K1N
140 139 adantr φiAjAiji:1K1N
141 140 frnd φiAjAijrani1N
142 125 141 sselpwd φiAjAijrani𝒫1N
143 122 124 113 142 fvmptd φiAjAijFi=rani
144 simpr φiAjAijz=jz=j
145 144 rneqd φiAjAijz=jranz=ranj
146 fzfid φ1NFin
147 146 3ad2ant1 φiAjA1NFin
148 eleq1w f=jfAjA
149 feq1 f=jf:1K1Nj:1K1N
150 fveq1 f=jfx=jx
151 fveq1 f=jfy=jy
152 150 151 breq12d f=jfx<fyjx<jy
153 152 imbi2d f=jx<yfx<fyx<yjx<jy
154 153 2ralbidv f=jx1Ky1Kx<yfx<fyx1Ky1Kx<yjx<jy
155 149 154 anbi12d f=jf:1K1Nx1Ky1Kx<yfx<fyj:1K1Nx1Ky1Kx<yjx<jy
156 148 155 bibi12d f=jfAf:1K1Nx1Ky1Kx<yfx<fyjAj:1K1Nx1Ky1Kx<yjx<jy
157 156 20 chvarvv jAj:1K1Nx1Ky1Kx<yjx<jy
158 157 biimpi jAj:1K1Nx1Ky1Kx<yjx<jy
159 158 adantl φjAj:1K1Nx1Ky1Kx<yjx<jy
160 159 simpld φjAj:1K1N
161 160 3adant2 φiAjAj:1K1N
162 161 frnd φiAjAranj1N
163 147 162 sselpwd φiAjAranj𝒫1N
164 163 adantr φiAjAijranj𝒫1N
165 122 145 114 164 fvmptd φiAjAijFj=ranj
166 121 143 165 3netr4d φiAjAijFiFj
167 166 ex φiAjAijFiFj
168 167 necon4d φiAjAFi=Fji=j
169 168 3expa φiAjAFi=Fji=j
170 169 ralrimiva φiAjAFi=Fji=j
171 170 ralrimiva φiAjAFi=Fji=j
172 108 171 jca φF:ABiAjAFi=Fji=j
173 dff13 F:A1-1BF:ABiAjAFi=Fji=j
174 172 173 sylibr φF:A1-1B