Metamath Proof Explorer


Theorem stirlinglem3

Description: Long but simple algebraic transformations are applied to show that V , the Wallis formula for π , can be expressed in terms of A , the Stirling's approximation formula for the factorial, up to a constant factor. This will allow (in a later theorem) to determine the right constant factor to be put into the A , in order to get the exact Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem3.1 A=nn!2nnen
stirlinglem3.2 D=nA2n
stirlinglem3.3 E=n2nnen
stirlinglem3.4 V=n24nn!42n!22n+1
Assertion stirlinglem3 V=nAn4Dn2n2n2n+1

Proof

Step Hyp Ref Expression
1 stirlinglem3.1 A=nn!2nnen
2 stirlinglem3.2 D=nA2n
3 stirlinglem3.3 E=n2nnen
4 stirlinglem3.4 V=n24nn!42n!22n+1
5 nnnn0 nn0
6 faccl n0n!
7 nncn n!n!
8 5 6 7 3syl nn!
9 2cnd n2
10 nncn nn
11 9 10 mulcld n2n
12 11 sqrtcld n2n
13 ere e
14 13 recni e
15 14 a1i ne
16 epos 0<e
17 13 16 gt0ne0ii e0
18 17 a1i ne0
19 10 15 18 divcld nne
20 19 5 expcld nnen
21 12 20 mulcld n2nnen
22 2rp 2+
23 22 a1i n2+
24 nnrp nn+
25 23 24 rpmulcld n2n+
26 25 sqrtgt0d n0<2n
27 26 gt0ne0d n2n0
28 nnne0 nn0
29 10 15 28 18 divne0d nne0
30 nnz nn
31 19 29 30 expne0d nnen0
32 12 20 27 31 mulne0d n2nnen0
33 8 21 32 divcld nn!2nnen
34 1 fvmpt2 nn!2nnenAn=n!2nnen
35 33 34 mpdan nAn=n!2nnen
36 35 oveq1d nAn4=n!2nnen4
37 3 fvmpt2 n2nnenEn=2nnen
38 21 37 mpdan nEn=2nnen
39 38 oveq1d nEn4=2nnen4
40 36 39 oveq12d nAn4En4=n!2nnen42nnen4
41 4nn0 40
42 41 a1i n40
43 8 21 32 42 expdivd nn!2nnen4=n!42nnen4
44 43 oveq1d nn!2nnen42nnen4=n!42nnen42nnen4
45 8 42 expcld nn!4
46 21 42 expcld n2nnen4
47 42 nn0zd n4
48 21 32 47 expne0d n2nnen40
49 45 46 48 divcan1d nn!42nnen42nnen4=n!4
50 40 44 49 3eqtrd nAn4En4=n!4
51 50 eqcomd nn!4=An4En4
52 51 oveq2d n24nn!4=24nAn4En4
53 2nn0 20
54 53 a1i n20
55 54 5 nn0mulcld n2n0
56 faccl 2n02n!
57 nncn 2n!2n!
58 55 56 57 3syl n2n!
59 58 sqcld n2n!2
60 9 11 mulcld n22n
61 60 sqrtcld n22n
62 11 15 18 divcld n2ne
63 62 55 expcld n2ne2n
64 61 63 mulcld n22n2ne2n
65 64 sqcld n22n2ne2n2
66 23 25 rpmulcld n22n+
67 66 sqrtgt0d n0<22n
68 67 gt0ne0d n22n0
69 23 rpne0d n20
70 9 10 69 28 mulne0d n2n0
71 11 15 70 18 divne0d n2ne0
72 2z 2
73 72 a1i n2
74 73 30 zmulcld n2n
75 62 71 74 expne0d n2ne2n0
76 61 63 68 75 mulne0d n22n2ne2n0
77 64 76 73 expne0d n22n2ne2n20
78 59 65 77 divcan1d n2n!222n2ne2n222n2ne2n2=2n!2
79 58 64 76 54 expdivd n2n!22n2ne2n2=2n!222n2ne2n2
80 79 eqcomd n2n!222n2ne2n2=2n!22n2ne2n2
81 80 oveq1d n2n!222n2ne2n222n2ne2n2=2n!22n2ne2n222n2ne2n2
82 78 81 eqtr3d n2n!2=2n!22n2ne2n222n2ne2n2
83 fveq2 n=mn!=m!
84 oveq2 n=m2n=2m
85 84 fveq2d n=m2n=2m
86 oveq1 n=mne=me
87 id n=mn=m
88 86 87 oveq12d n=mnen=mem
89 85 88 oveq12d n=m2nnen=2mmem
90 83 89 oveq12d n=mn!2nnen=m!2mmem
91 90 cbvmptv nn!2nnen=mm!2mmem
92 1 91 eqtri A=mm!2mmem
93 fveq2 m=2nm!=2n!
94 oveq2 m=2n2m=22n
95 94 fveq2d m=2n2m=22n
96 oveq1 m=2nme=2ne
97 id m=2nm=2n
98 96 97 oveq12d m=2nmem=2ne2n
99 95 98 oveq12d m=2n2mmem=22n2ne2n
100 93 99 oveq12d m=2nm!2mmem=2n!22n2ne2n
101 2nn 2
102 101 a1i n2
103 id nn
104 102 103 nnmulcld n2n
105 58 64 76 divcld n2n!22n2ne2n
106 92 100 104 105 fvmptd3 nA2n=2n!22n2ne2n
107 106 oveq1d nA2n2=2n!22n2ne2n2
108 107 eqcomd n2n!22n2ne2n2=A2n2
109 108 oveq1d n2n!22n2ne2n222n2ne2n2=A2n222n2ne2n2
110 eqidd nm2mmem=m2mmem
111 99 adantl nm=2n2mmem=22n2ne2n
112 110 111 104 64 fvmptd nm2mmem2n=22n2ne2n
113 112 oveq1d nm2mmem2n2=22n2ne2n2
114 113 eqcomd n22n2ne2n2=m2mmem2n2
115 114 oveq2d nA2n222n2ne2n2=A2n2m2mmem2n2
116 82 109 115 3eqtrd n2n!2=A2n2m2mmem2n2
117 89 cbvmptv n2nnen=m2mmem
118 117 a1i nn2nnen=m2mmem
119 118 fveq1d nn2nnen2n=m2mmem2n
120 119 eqcomd nm2mmem2n=n2nnen2n
121 120 oveq1d nm2mmem2n2=n2nnen2n2
122 121 oveq2d nA2n2m2mmem2n2=A2n2n2nnen2n2
123 106 105 eqeltrd nA2n
124 2 fvmpt2 nA2nDn=A2n
125 123 124 mpdan nDn=A2n
126 125 eqcomd nA2n=Dn
127 126 oveq1d nA2n2=Dn2
128 3 a1i nE=n2nnen
129 128 fveq1d nE2n=n2nnen2n
130 129 eqcomd nn2nnen2n=E2n
131 130 oveq1d nn2nnen2n2=E2n2
132 127 131 oveq12d nA2n2n2nnen2n2=Dn2E2n2
133 116 122 132 3eqtrd n2n!2=Dn2E2n2
134 52 133 oveq12d n24nn!42n!2=24nAn4En4Dn2E2n2
135 134 oveq1d n24nn!42n!22n+1=24nAn4En4Dn2E2n22n+1
136 135 mpteq2ia n24nn!42n!22n+1=n24nAn4En4Dn2E2n22n+1
137 42 5 nn0mulcld n4n0
138 9 137 expcld n24n
139 50 45 eqeltrd nAn4En4
140 138 139 mulcomd n24nAn4En4=An4En424n
141 140 oveq1d n24nAn4En4Dn2E2n2=An4En424nDn2E2n2
142 141 oveq1d n24nAn4En4Dn2E2n22n+1=An4En424nDn2E2n22n+1
143 125 123 eqeltrd nDn
144 143 sqcld nDn2
145 128 118 eqtrd nE=m2mmem
146 145 111 104 64 fvmptd nE2n=22n2ne2n
147 146 64 eqeltrd nE2n
148 147 sqcld nE2n2
149 nnne0 2n!2n!0
150 55 56 149 3syl n2n!0
151 58 64 150 76 divne0d n2n!22n2ne2n0
152 106 151 eqnetrd nA2n0
153 125 152 eqnetrd nDn0
154 143 153 73 expne0d nDn20
155 146 76 eqnetrd nE2n0
156 147 155 73 expne0d nE2n20
157 139 144 138 148 154 156 divmuldivd nAn4En4Dn224nE2n2=An4En424nDn2E2n2
158 157 eqcomd nAn4En424nDn2E2n2=An4En4Dn224nE2n2
159 158 oveq1d nAn4En424nDn2E2n22n+1=An4En4Dn224nE2n22n+1
160 35 33 eqeltrd nAn
161 160 42 expcld nAn4
162 39 46 eqeltrd nEn4
163 161 162 144 154 div23d nAn4En4Dn2=An4Dn2En4
164 163 oveq1d nAn4En4Dn224nE2n2=An4Dn2En424nE2n2
165 164 oveq1d nAn4En4Dn224nE2n22n+1=An4Dn2En424nE2n22n+1
166 161 144 154 divcld nAn4Dn2
167 138 148 156 divcld n24nE2n2
168 166 162 167 mulassd nAn4Dn2En424nE2n2=An4Dn2En424nE2n2
169 168 oveq1d nAn4Dn2En424nE2n22n+1=An4Dn2En424nE2n22n+1
170 162 167 mulcld nEn424nE2n2
171 1cnd n1
172 11 171 addcld n2n+1
173 0red n0
174 104 nnred n2n
175 2re 2
176 175 a1i n2
177 nnre nn
178 176 177 remulcld n2n
179 1red n1
180 178 179 readdcld n2n+1
181 104 nngt0d n0<2n
182 174 ltp1d n2n<2n+1
183 173 174 180 181 182 lttrd n0<2n+1
184 183 gt0ne0d n2n+10
185 166 170 172 184 divassd nAn4Dn2En424nE2n22n+1=An4Dn2En424nE2n22n+1
186 162 138 148 156 div12d nEn424nE2n2=24nEn4E2n2
187 12 20 42 mulexpd n2nnen4=2n4nen4
188 61 63 sqmuld n22n2ne2n2=22n22ne2n2
189 187 188 oveq12d n2nnen422n2ne2n2=2n4nen422n22ne2n2
190 146 oveq1d nE2n2=22n2ne2n2
191 39 190 oveq12d nEn4E2n2=2nnen422n2ne2n2
192 12 42 expcld n2n4
193 61 sqcld n22n2
194 20 42 expcld nnen4
195 63 sqcld n2ne2n2
196 61 68 73 expne0d n22n20
197 63 75 73 expne0d n2ne2n20
198 192 193 194 195 196 197 divmuldivd n2n422n2nen42ne2n2=2n4nen422n22ne2n2
199 189 191 198 3eqtr4d nEn4E2n2=2n422n2nen42ne2n2
200 199 oveq2d n24nEn4E2n2=24n2n422n2nen42ne2n2
201 66 rprege0d n22n022n
202 resqrtth 22n022n22n2=22n
203 201 202 syl n22n2=22n
204 203 oveq2d n2n422n2=2n422n
205 2t2e4 22=4
206 205 eqcomi 4=22
207 206 a1i n4=22
208 207 oveq2d n2n4=2n22
209 12 54 54 expmuld n2n22=2n22
210 25 rprege0d n2n02n
211 resqrtth 2n02n2n2=2n
212 210 211 syl n2n2=2n
213 212 oveq1d n2n22=2n2
214 208 209 213 3eqtrd n2n4=2n2
215 9 9 10 mulassd n22n=22n
216 205 a1i n22=4
217 216 oveq1d n22n=4n
218 215 217 eqtr3d n22n=4n
219 214 218 oveq12d n2n422n=2n24n
220 9 10 sqmuld n2n2=22n2
221 sq2 22=4
222 221 a1i n22=4
223 222 oveq1d n22n2=4n2
224 220 223 eqtrd n2n2=4n2
225 224 oveq1d n2n24n=4n24n
226 4cn 4
227 4ne0 40
228 226 227 dividi 44=1
229 228 a1i n44=1
230 10 sqvald nn2=nn
231 230 oveq1d nn2n=nnn
232 10 10 28 divcan4d nnnn=n
233 231 232 eqtrd nn2n=n
234 229 233 oveq12d n44n2n=1n
235 42 nn0cnd n4
236 10 sqcld nn2
237 227 a1i n40
238 235 235 236 10 237 28 divmuldivd n44n2n=4n24n
239 10 mullidd n1n=n
240 234 238 239 3eqtr3d n4n24n=n
241 225 240 eqtrd n2n24n=n
242 204 219 241 3eqtrd n2n422n2=n
243 10 235 mulcomd nn4=4n
244 243 oveq2d nnen4=ne4n
245 19 42 5 expmuld nnen4=nen4
246 10 15 18 137 expdivd nne4n=n4ne4n
247 244 245 246 3eqtr3d nnen4=n4ne4n
248 9 10 9 mul32d n2n2=22n
249 248 217 eqtrd n2n2=4n
250 249 oveq2d n2ne2n2=2ne4n
251 62 54 55 expmuld n2ne2n2=2ne2n2
252 11 15 18 137 expdivd n2ne4n=2n4ne4n
253 250 251 252 3eqtr3d n2ne2n2=2n4ne4n
254 247 253 oveq12d nnen42ne2n2=n4ne4n2n4ne4n
255 247 194 eqeltrrd nn4ne4n
256 11 137 expcld n2n4n
257 15 137 expcld ne4n
258 47 30 zmulcld n4n
259 11 70 258 expne0d n2n4n0
260 15 18 258 expne0d ne4n0
261 255 256 257 259 260 divdiv2d nn4ne4n2n4ne4n=n4ne4ne4n2n4n
262 10 137 expcld nn4n
263 262 257 260 divcan1d nn4ne4ne4n=n4n
264 263 oveq1d nn4ne4ne4n2n4n=n4n2n4n
265 9 10 137 mulexpd n2n4n=24nn4n
266 265 oveq2d nn4n2n4n=n4n24nn4n
267 138 262 mulcomd n24nn4n=n4n24n
268 267 oveq2d nn4n24nn4n=n4nn4n24n
269 10 28 258 expne0d nn4n0
270 9 69 258 expne0d n24n0
271 262 262 138 269 270 divdiv1d nn4nn4n24n=n4nn4n24n
272 262 269 dividd nn4nn4n=1
273 272 oveq1d nn4nn4n24n=124n
274 268 271 273 3eqtr2d nn4n24nn4n=124n
275 264 266 274 3eqtrd nn4ne4ne4n2n4n=124n
276 254 261 275 3eqtrd nnen42ne2n2=124n
277 242 276 oveq12d n2n422n2nen42ne2n2=n124n
278 277 oveq2d n24n2n422n2nen42ne2n2=24nn124n
279 138 270 reccld n124n
280 138 10 279 mul12d n24nn124n=n24n124n
281 10 mulridd nn1=n
282 138 270 recidd n24n124n=1
283 282 oveq2d nn24n124n=n1
284 281 283 233 3eqtr4d nn24n124n=n2n
285 278 280 284 3eqtrd n24n2n422n2nen42ne2n2=n2n
286 186 200 285 3eqtrd nEn424nE2n2=n2n
287 286 oveq1d nEn424nE2n22n+1=n2n2n+1
288 236 10 172 28 184 divdiv1d nn2n2n+1=n2n2n+1
289 287 288 eqtrd nEn424nE2n22n+1=n2n2n+1
290 289 oveq2d nAn4Dn2En424nE2n22n+1=An4Dn2n2n2n+1
291 185 290 eqtrd nAn4Dn2En424nE2n22n+1=An4Dn2n2n2n+1
292 165 169 291 3eqtrd nAn4En4Dn224nE2n22n+1=An4Dn2n2n2n+1
293 142 159 292 3eqtrd n24nAn4En4Dn2E2n22n+1=An4Dn2n2n2n+1
294 293 mpteq2ia n24nAn4En4Dn2E2n22n+1=nAn4Dn2n2n2n+1
295 4 136 294 3eqtri V=nAn4Dn2n2n2n+1