Metamath Proof Explorer


Theorem stoweidlem20

Description: If a set A of real functions from a common domain T is closed under the sum of two functions, then it is closed under the sum of a finite number of functions, indexed by G. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem20.1 tφ
stoweidlem20.2 F=tTi=1MGit
stoweidlem20.3 φM
stoweidlem20.4 φG:1MA
stoweidlem20.5 φfAgAtTft+gtA
stoweidlem20.6 φfAf:T
Assertion stoweidlem20 φFA

Proof

Step Hyp Ref Expression
1 stoweidlem20.1 tφ
2 stoweidlem20.2 F=tTi=1MGit
3 stoweidlem20.3 φM
4 stoweidlem20.4 φG:1MA
5 stoweidlem20.5 φfAgAtTft+gtA
6 stoweidlem20.6 φfAf:T
7 3 nnred φM
8 7 leidd φMM
9 8 ancli φφMM
10 eleq1 n=MnM
11 breq1 n=MnMMM
12 11 anbi2d n=MφnMφMM
13 oveq2 n=M1n=1M
14 13 sumeq1d n=Mi=1nGit=i=1MGit
15 14 mpteq2dv n=MtTi=1nGit=tTi=1MGit
16 15 eleq1d n=MtTi=1nGitAtTi=1MGitA
17 12 16 imbi12d n=MφnMtTi=1nGitAφMMtTi=1MGitA
18 10 17 imbi12d n=MnφnMtTi=1nGitAMφMMtTi=1MGitA
19 breq1 x=1xM1M
20 19 anbi2d x=1φxMφ1M
21 oveq2 x=11x=11
22 21 sumeq1d x=1i=1xGit=i=11Git
23 22 mpteq2dv x=1tTi=1xGit=tTi=11Git
24 23 eleq1d x=1tTi=1xGitAtTi=11GitA
25 20 24 imbi12d x=1φxMtTi=1xGitAφ1MtTi=11GitA
26 breq1 x=yxMyM
27 26 anbi2d x=yφxMφyM
28 oveq2 x=y1x=1y
29 28 sumeq1d x=yi=1xGit=i=1yGit
30 29 mpteq2dv x=ytTi=1xGit=tTi=1yGit
31 30 eleq1d x=ytTi=1xGitAtTi=1yGitA
32 27 31 imbi12d x=yφxMtTi=1xGitAφyMtTi=1yGitA
33 breq1 x=y+1xMy+1M
34 33 anbi2d x=y+1φxMφy+1M
35 oveq2 x=y+11x=1y+1
36 35 sumeq1d x=y+1i=1xGit=i=1y+1Git
37 36 mpteq2dv x=y+1tTi=1xGit=tTi=1y+1Git
38 37 eleq1d x=y+1tTi=1xGitAtTi=1y+1GitA
39 34 38 imbi12d x=y+1φxMtTi=1xGitAφy+1MtTi=1y+1GitA
40 breq1 x=nxMnM
41 40 anbi2d x=nφxMφnM
42 oveq2 x=n1x=1n
43 42 sumeq1d x=ni=1xGit=i=1nGit
44 43 mpteq2dv x=ntTi=1xGit=tTi=1nGit
45 44 eleq1d x=ntTi=1xGitAtTi=1nGitA
46 41 45 imbi12d x=nφxMtTi=1xGitAφnMtTi=1nGitA
47 1z 1
48 nnuz =1
49 3 48 eleqtrdi φM1
50 eluzfz1 M111M
51 49 50 syl φ11M
52 4 51 ffvelcdmd φG1A
53 52 ancli φφG1A
54 eleq1 f=G1fAG1A
55 54 anbi2d f=G1φfAφG1A
56 feq1 f=G1f:TG1:T
57 55 56 imbi12d f=G1φfAf:TφG1AG1:T
58 57 6 vtoclg G1AφG1AG1:T
59 52 53 58 sylc φG1:T
60 59 ffvelcdmda φtTG1t
61 60 recnd φtTG1t
62 fveq2 i=1Gi=G1
63 62 fveq1d i=1Git=G1t
64 63 fsum1 1G1ti=11Git=G1t
65 47 61 64 sylancr φtTi=11Git=G1t
66 1 65 mpteq2da φtTi=11Git=tTG1t
67 59 feqmptd φG1=tTG1t
68 66 67 eqtr4d φtTi=11Git=G1
69 68 52 eqeltrd φtTi=11GitA
70 69 adantr φ1MtTi=11GitA
71 simprl yφyMtTi=1yGitAφy+1Mφ
72 simpll yφyMtTi=1yGitAφy+1My
73 simprr yφyMtTi=1yGitAφy+1My+1M
74 simp1 φyy+1Mφ
75 nnre yy
76 75 3ad2ant2 φyy+1My
77 1red φyy+1M1
78 76 77 readdcld φyy+1My+1
79 3 3ad2ant1 φyy+1MM
80 79 nnred φyy+1MM
81 76 lep1d φyy+1Myy+1
82 simp3 φyy+1My+1M
83 76 78 80 81 82 letrd φyy+1MyM
84 74 83 jca φyy+1MφyM
85 71 72 73 84 syl3anc yφyMtTi=1yGitAφy+1MφyM
86 simplr yφyMtTi=1yGitAφy+1MφyMtTi=1yGitA
87 85 86 mpd yφyMtTi=1yGitAφy+1MtTi=1yGitA
88 nfv ty
89 nfv ty+1M
90 1 88 89 nf3an tφyy+1M
91 simpl2 φyy+1MtTy
92 91 48 eleqtrdi φyy+1MtTy1
93 simpll1 φyy+1MtTi1y+1φ
94 1zzd φyy+1MtTi1y+11
95 3 nnzd φM
96 95 3ad2ant1 φyy+1MM
97 96 ad2antrr φyy+1MtTi1y+1M
98 elfzelz i1y+1i
99 98 adantl φyy+1MtTi1y+1i
100 elfzle1 i1y+11i
101 100 adantl φyy+1MtTi1y+11i
102 98 zred i1y+1i
103 102 adantl φyy+1MtTi1y+1i
104 78 ad2antrr φyy+1MtTi1y+1y+1
105 80 ad2antrr φyy+1MtTi1y+1M
106 elfzle2 i1y+1iy+1
107 106 adantl φyy+1MtTi1y+1iy+1
108 simpll3 φyy+1MtTi1y+1y+1M
109 103 104 105 107 108 letrd φyy+1MtTi1y+1iM
110 94 97 99 101 109 elfzd φyy+1MtTi1y+1i1M
111 simplr φyy+1MtTi1y+1tT
112 4 ffvelcdmda φi1MGiA
113 112 3adant3 φi1MtTGiA
114 simp1 φi1MtTφ
115 114 113 jca φi1MtTφGiA
116 eleq1 f=GifAGiA
117 116 anbi2d f=GiφfAφGiA
118 feq1 f=Gif:TGi:T
119 117 118 imbi12d f=GiφfAf:TφGiAGi:T
120 119 6 vtoclg GiAφGiAGi:T
121 113 115 120 sylc φi1MtTGi:T
122 simp3 φi1MtTtT
123 121 122 ffvelcdmd φi1MtTGit
124 123 recnd φi1MtTGit
125 93 110 111 124 syl3anc φyy+1MtTi1y+1Git
126 fveq2 i=y+1Gi=Gy+1
127 126 fveq1d i=y+1Git=Gy+1t
128 92 125 127 fsump1 φyy+1MtTi=1y+1Git=i=1yGit+Gy+1t
129 simpr φyy+1MtTtT
130 fzfid φyy+1MtT1yFin
131 simpll1 φyy+1MtTi1yφ
132 1zzd φyy+1MtTi1y1
133 96 ad2antrr φyy+1MtTi1yM
134 elfzelz i1yi
135 134 adantl φyy+1MtTi1yi
136 elfzle1 i1y1i
137 136 adantl φyy+1MtTi1y1i
138 134 zred i1yi
139 138 adantl φyy+1Mi1yi
140 78 adantr φyy+1Mi1yy+1
141 80 adantr φyy+1Mi1yM
142 76 adantr φyy+1Mi1yy
143 elfzle2 i1yiy
144 143 adantl φyy+1Mi1yiy
145 letrp1 iyiyiy+1
146 139 142 144 145 syl3anc φyy+1Mi1yiy+1
147 simpl3 φyy+1Mi1yy+1M
148 139 140 141 146 147 letrd φyy+1Mi1yiM
149 148 adantlr φyy+1MtTi1yiM
150 132 133 135 137 149 elfzd φyy+1MtTi1yi1M
151 simplr φyy+1MtTi1ytT
152 131 150 151 123 syl3anc φyy+1MtTi1yGit
153 130 152 fsumrecl φyy+1MtTi=1yGit
154 eqid tTi=1yGit=tTi=1yGit
155 154 fvmpt2 tTi=1yGittTi=1yGitt=i=1yGit
156 129 153 155 syl2anc φyy+1MtTtTi=1yGitt=i=1yGit
157 156 oveq1d φyy+1MtTtTi=1yGitt+Gy+1t=i=1yGit+Gy+1t
158 128 157 eqtr4d φyy+1MtTi=1y+1Git=tTi=1yGitt+Gy+1t
159 90 158 mpteq2da φyy+1MtTi=1y+1Git=tTtTi=1yGitt+Gy+1t
160 159 adantr φyy+1MtTi=1yGitAtTi=1y+1Git=tTtTi=1yGitt+Gy+1t
161 1zzd φyy+1M1
162 peano2nn yy+1
163 162 nnzd yy+1
164 163 3ad2ant2 φyy+1My+1
165 162 nnge1d y1y+1
166 165 3ad2ant2 φyy+1M1y+1
167 161 96 164 166 82 elfzd φyy+1My+11M
168 4 ffvelcdmda φy+11MGy+1A
169 74 167 168 syl2anc φyy+1MGy+1A
170 eleq1 f=Gy+1fAGy+1A
171 170 anbi2d f=Gy+1φfAφGy+1A
172 feq1 f=Gy+1f:TGy+1:T
173 171 172 imbi12d f=Gy+1φfAf:TφGy+1AGy+1:T
174 173 6 vtoclg Gy+1AφGy+1AGy+1:T
175 174 anabsi7 φGy+1AGy+1:T
176 74 169 175 syl2anc φyy+1MGy+1:T
177 176 ffvelcdmda φyy+1MtTGy+1t
178 eqid tTGy+1t=tTGy+1t
179 178 fvmpt2 tTGy+1ttTGy+1tt=Gy+1t
180 129 177 179 syl2anc φyy+1MtTtTGy+1tt=Gy+1t
181 180 oveq2d φyy+1MtTtTi=1yGitt+tTGy+1tt=tTi=1yGitt+Gy+1t
182 90 181 mpteq2da φyy+1MtTtTi=1yGitt+tTGy+1tt=tTtTi=1yGitt+Gy+1t
183 182 adantr φyy+1MtTi=1yGitAtTtTi=1yGitt+tTGy+1tt=tTtTi=1yGitt+Gy+1t
184 simpl1 φyy+1MtTi=1yGitAφ
185 simpr φyy+1MtTi=1yGitAtTi=1yGitA
186 167 adantr φyy+1MtTi=1yGitAy+11M
187 175 feqmptd φGy+1AGy+1=tTGy+1t
188 168 187 syldan φy+11MGy+1=tTGy+1t
189 188 168 eqeltrrd φy+11MtTGy+1tA
190 184 186 189 syl2anc φyy+1MtTi=1yGitAtTGy+1tA
191 nfmpt1 _ttTi=1yGit
192 nfmpt1 _ttTGy+1t
193 5 191 192 stoweidlem8 φtTi=1yGitAtTGy+1tAtTtTi=1yGitt+tTGy+1ttA
194 184 185 190 193 syl3anc φyy+1MtTi=1yGitAtTtTi=1yGitt+tTGy+1ttA
195 183 194 eqeltrrd φyy+1MtTi=1yGitAtTtTi=1yGitt+Gy+1tA
196 160 195 eqeltrd φyy+1MtTi=1yGitAtTi=1y+1GitA
197 71 72 73 87 196 syl31anc yφyMtTi=1yGitAφy+1MtTi=1y+1GitA
198 197 exp31 yφyMtTi=1yGitAφy+1MtTi=1y+1GitA
199 25 32 39 46 70 198 nnind nφnMtTi=1nGitA
200 18 199 vtoclg MMφMMtTi=1MGitA
201 3 3 9 200 syl3c φtTi=1MGitA
202 2 201 eqeltrid φFA