| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem46.1 |  | 
						
							| 2 |  | stoweidlem46.2 |  | 
						
							| 3 |  | stoweidlem46.3 |  | 
						
							| 4 |  | stoweidlem46.4 |  | 
						
							| 5 |  | stoweidlem46.5 |  | 
						
							| 6 |  | stoweidlem46.6 |  | 
						
							| 7 |  | stoweidlem46.7 |  | 
						
							| 8 |  | stoweidlem46.8 |  | 
						
							| 9 |  | stoweidlem46.9 |  | 
						
							| 10 |  | stoweidlem46.10 |  | 
						
							| 11 |  | stoweidlem46.11 |  | 
						
							| 12 |  | stoweidlem46.12 |  | 
						
							| 13 |  | stoweidlem46.13 |  | 
						
							| 14 |  | stoweidlem46.14 |  | 
						
							| 15 |  | stoweidlem46.15 |  | 
						
							| 16 |  | stoweidlem46.16 |  | 
						
							| 17 |  | stoweidlem46.17 |  | 
						
							| 18 |  | nfv |  | 
						
							| 19 | 3 18 | nfan |  | 
						
							| 20 |  | nfcv |  | 
						
							| 21 | 20 1 | nfdif |  | 
						
							| 22 | 21 | nfel2 |  | 
						
							| 23 | 4 22 | nfan |  | 
						
							| 24 | 9 | adantr |  | 
						
							| 25 | 10 | adantr |  | 
						
							| 26 | 11 | 3adant1r |  | 
						
							| 27 | 12 | 3adant1r |  | 
						
							| 28 | 13 | adantlr |  | 
						
							| 29 | 14 | adantlr |  | 
						
							| 30 | 15 | adantr |  | 
						
							| 31 | 16 | adantr |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 | 19 23 2 5 6 8 24 25 26 27 28 29 30 31 32 | stoweidlem43 |  | 
						
							| 34 |  | nfv |  | 
						
							| 35 | 2 | nfel2 |  | 
						
							| 36 |  | nfv |  | 
						
							| 37 | 35 36 | nfan |  | 
						
							| 38 |  | eleq1 |  | 
						
							| 39 |  | fveq1 |  | 
						
							| 40 | 39 | breq2d |  | 
						
							| 41 | 38 40 | anbi12d |  | 
						
							| 42 | 34 37 41 | cbvexv1 |  | 
						
							| 43 | 33 42 | sylib |  | 
						
							| 44 |  | rabexg |  | 
						
							| 45 | 17 44 | syl |  | 
						
							| 46 | 45 | ad2antrr |  | 
						
							| 47 |  | eldifi |  | 
						
							| 48 | 47 | ad2antlr |  | 
						
							| 49 |  | simprr |  | 
						
							| 50 |  | fveq2 |  | 
						
							| 51 | 50 | breq2d |  | 
						
							| 52 | 51 | elrab |  | 
						
							| 53 | 48 49 52 | sylanbrc |  | 
						
							| 54 |  | simpll |  | 
						
							| 55 | 10 | adantr |  | 
						
							| 56 |  | simpr |  | 
						
							| 57 | 56 6 | eleqtrdi |  | 
						
							| 58 |  | fveq1 |  | 
						
							| 59 | 58 | eqeq1d |  | 
						
							| 60 |  | fveq1 |  | 
						
							| 61 | 60 | breq2d |  | 
						
							| 62 | 60 | breq1d |  | 
						
							| 63 | 61 62 | anbi12d |  | 
						
							| 64 | 63 | ralbidv |  | 
						
							| 65 | 59 64 | anbi12d |  | 
						
							| 66 | 65 | elrab |  | 
						
							| 67 | 57 66 | sylib |  | 
						
							| 68 | 67 | simpld |  | 
						
							| 69 | 55 68 | sseldd |  | 
						
							| 70 | 69 | ad2ant2r |  | 
						
							| 71 |  | nfcv |  | 
						
							| 72 |  | nfcv |  | 
						
							| 73 |  | nfv |  | 
						
							| 74 | 4 73 | nfan |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 |  | 0xr |  | 
						
							| 77 | 76 | a1i |  | 
						
							| 78 |  | simpr |  | 
						
							| 79 | 71 72 74 5 8 75 77 78 | rfcnpre1 |  | 
						
							| 80 | 54 70 79 | syl2anc |  | 
						
							| 81 |  | eqidd |  | 
						
							| 82 |  | nfv |  | 
						
							| 83 |  | nfcv |  | 
						
							| 84 | 60 | breq2d |  | 
						
							| 85 | 84 | rabbidv |  | 
						
							| 86 | 85 | eqeq2d |  | 
						
							| 87 | 82 83 2 86 | rspcegf |  | 
						
							| 88 | 56 81 87 | syl2anc |  | 
						
							| 89 | 88 | ad2ant2r |  | 
						
							| 90 |  | eqeq1 |  | 
						
							| 91 | 90 | rexbidv |  | 
						
							| 92 | 91 | elrab |  | 
						
							| 93 | 80 89 92 | sylanbrc |  | 
						
							| 94 | 93 7 | eleqtrrdi |  | 
						
							| 95 |  | nfcv |  | 
						
							| 96 |  | nfv |  | 
						
							| 97 |  | nfrab1 |  | 
						
							| 98 | 7 97 | nfcxfr |  | 
						
							| 99 | 98 | nfel2 |  | 
						
							| 100 | 96 99 | nfan |  | 
						
							| 101 |  | eleq2 |  | 
						
							| 102 |  | eleq1 |  | 
						
							| 103 | 101 102 | anbi12d |  | 
						
							| 104 | 95 100 103 | spcegf |  | 
						
							| 105 | 104 | imp |  | 
						
							| 106 | 46 53 94 105 | syl12anc |  | 
						
							| 107 | 43 106 | exlimddv |  | 
						
							| 108 |  | nfcv |  | 
						
							| 109 | 108 98 | elunif |  | 
						
							| 110 | 107 109 | sylibr |  | 
						
							| 111 | 110 | ex |  | 
						
							| 112 | 111 | ssrdv |  |