Metamath Proof Explorer


Theorem stoweidlem62

Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows BrosowskiDeutsh p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017) (Revised by AV, 13-Sep-2020)

Ref Expression
Hypotheses stoweidlem62.1 _tF
stoweidlem62.2 fφ
stoweidlem62.3 tφ
stoweidlem62.4 H=tTFtsupranF<
stoweidlem62.5 K=topGenran.
stoweidlem62.6 T=J
stoweidlem62.7 φJComp
stoweidlem62.8 C=JCnK
stoweidlem62.9 φAC
stoweidlem62.10 φfAgAtTft+gtA
stoweidlem62.11 φfAgAtTftgtA
stoweidlem62.12 φxtTxA
stoweidlem62.13 φrTtTrtqAqrqt
stoweidlem62.14 φFC
stoweidlem62.15 φE+
stoweidlem62.16 φT
stoweidlem62.17 φE<13
Assertion stoweidlem62 φfAtTftFt<E

Proof

Step Hyp Ref Expression
1 stoweidlem62.1 _tF
2 stoweidlem62.2 fφ
3 stoweidlem62.3 tφ
4 stoweidlem62.4 H=tTFtsupranF<
5 stoweidlem62.5 K=topGenran.
6 stoweidlem62.6 T=J
7 stoweidlem62.7 φJComp
8 stoweidlem62.8 C=JCnK
9 stoweidlem62.9 φAC
10 stoweidlem62.10 φfAgAtTft+gtA
11 stoweidlem62.11 φfAgAtTftgtA
12 stoweidlem62.12 φxtTxA
13 stoweidlem62.13 φrTtTrtqAqrqt
14 stoweidlem62.14 φFC
15 stoweidlem62.15 φE+
16 stoweidlem62.16 φT
17 stoweidlem62.17 φE<13
18 nfmpt1 _ttTFtsupranF<
19 4 18 nfcxfr _tH
20 eleq1w g=hgAhA
21 20 3anbi3d g=hφfAgAφfAhA
22 fveq1 g=hgt=ht
23 22 oveq2d g=hft+gt=ft+ht
24 23 mpteq2dv g=htTft+gt=tTft+ht
25 24 eleq1d g=htTft+gtAtTft+htA
26 21 25 imbi12d g=hφfAgAtTft+gtAφfAhAtTft+htA
27 26 10 chvarvv φfAhAtTft+htA
28 22 oveq2d g=hftgt=ftht
29 28 mpteq2dv g=htTftgt=tTftht
30 29 eleq1d g=htTftgtAtTfthtA
31 21 30 imbi12d g=hφfAgAtTftgtAφfAhAtTfthtA
32 31 11 chvarvv φfAhAtTfthtA
33 1 nfrn _tranF
34 nfcv _t
35 nfcv _t<
36 33 34 35 nfinf _tsupranF<
37 eqid T×supranF<=T×supranF<
38 cmptop JCompJTop
39 7 38 syl φJTop
40 14 8 eleqtrdi φFJCnK
41 1 3 6 5 7 40 16 stoweidlem29 φsupranF<ranFsupranF<tTsupranF<Ft
42 41 simp2d φsupranF<
43 1 36 3 6 37 5 39 8 14 42 stoweidlem47 φtTFtsupranF<C
44 4 43 eqeltrid φHC
45 41 simp3d φtTsupranF<Ft
46 45 r19.21bi φtTsupranF<Ft
47 5 6 8 14 fcnre φF:T
48 47 ffvelcdmda φtTFt
49 42 adantr φtTsupranF<
50 48 49 subge0d φtT0FtsupranF<supranF<Ft
51 46 50 mpbird φtT0FtsupranF<
52 simpr φtTtT
53 48 49 resubcld φtTFtsupranF<
54 4 fvmpt2 tTFtsupranF<Ht=FtsupranF<
55 52 53 54 syl2anc φtTHt=FtsupranF<
56 51 55 breqtrrd φtT0Ht
57 56 ex φtT0Ht
58 3 57 ralrimi φtT0Ht
59 15 rphalfcld φE2+
60 15 rpred φE
61 60 rehalfcld φE2
62 3re 3
63 3ne0 30
64 62 63 rereccli 13
65 64 a1i φ13
66 rphalflt E+E2<E
67 15 66 syl φE2<E
68 61 60 65 67 17 lttrd φE2<13
69 19 3 5 7 6 16 8 9 27 32 12 13 44 58 59 68 stoweidlem61 φhAtThtHt<2E2
70 nfra1 ttThtHt<2E2
71 3 70 nfan tφtThtHt<2E2
72 rsp tThtHt<2E2tThtHt<2E2
73 15 rpcnd φE
74 2cnd φ2
75 2ne0 20
76 75 a1i φ20
77 73 74 76 divcan2d φ2E2=E
78 77 breq2d φhtHt<2E2htHt<E
79 78 biimpd φhtHt<2E2htHt<E
80 72 79 sylan9r φtThtHt<2E2tThtHt<E
81 71 80 ralrimi φtThtHt<2E2tThtHt<E
82 81 ex φtThtHt<2E2tThtHt<E
83 82 reximdv φhAtThtHt<2E2hAtThtHt<E
84 69 83 mpd φhAtThtHt<E
85 nfmpt1 _ttTht+supranF<
86 nfcv _th
87 nfv thA
88 nfra1 ttThtHt<E
89 87 88 nfan thAtThtHt<E
90 3 89 nfan tφhAtThtHt<E
91 eqid tTht+supranF<=tTht+supranF<
92 47 adantr φhAtThtHt<EF:T
93 42 adantr φhAtThtHt<EsupranF<
94 10 3adant1r φhAtThtHt<EfAgAtTft+gtA
95 12 adantlr φhAtThtHt<ExtTxA
96 9 sseld φfAfC
97 8 eleq2i fCfJCnK
98 96 97 imbitrdi φfAfJCnK
99 eqid J=J
100 uniretop =topGenran.
101 5 unieqi K=topGenran.
102 100 101 eqtr4i =K
103 99 102 cnf fJCnKf:J
104 98 103 syl6 φfAf:J
105 feq2 T=Jf:Tf:J
106 6 105 mp1i φf:Tf:J
107 104 106 sylibrd φfAf:T
108 2 107 ralrimi φfAf:T
109 108 adantr φhAtThtHt<EfAf:T
110 simprl φhAtThtHt<EhA
111 55 eqcomd φtTFtsupranF<=Ht
112 111 oveq2d φtThtFtsupranF<=htHt
113 112 fveq2d φtThtFtsupranF<=htHt
114 113 adantlr φhAtThtHt<EtThtFtsupranF<=htHt
115 simplrr φhAtThtHt<EtTtThtHt<E
116 rspa tThtHt<EtThtHt<E
117 115 116 sylancom φhAtThtHt<EtThtHt<E
118 114 117 eqbrtrd φhAtThtHt<EtThtFtsupranF<<E
119 118 ex φhAtThtHt<EtThtFtsupranF<<E
120 90 119 ralrimi φhAtThtHt<EtThtFtsupranF<<E
121 85 86 36 90 91 92 93 94 95 109 110 120 stoweidlem21 φhAtThtHt<EfAtTftFt<E
122 84 121 rexlimddv φfAtTftFt<E