Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows BrosowskiDeutsh p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017) (Revised by AV, 13-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem62.1 | |
|
stoweidlem62.2 | |
||
stoweidlem62.3 | |
||
stoweidlem62.4 | |
||
stoweidlem62.5 | |
||
stoweidlem62.6 | |
||
stoweidlem62.7 | |
||
stoweidlem62.8 | |
||
stoweidlem62.9 | |
||
stoweidlem62.10 | |
||
stoweidlem62.11 | |
||
stoweidlem62.12 | |
||
stoweidlem62.13 | |
||
stoweidlem62.14 | |
||
stoweidlem62.15 | |
||
stoweidlem62.16 | |
||
stoweidlem62.17 | |
||
Assertion | stoweidlem62 | |