Metamath Proof Explorer


Theorem summolem2a

Description: Lemma for summo . (Contributed by Mario Carneiro, 3-Apr-2014) (Revised by Mario Carneiro, 20-Apr-2014)

Ref Expression
Hypotheses summo.1 F = k if k A B 0
summo.2 φ k A B
summo.3 G = n f n / k B
summolem2.4 H = n K n / k B
summolem2.5 φ N
summolem2.6 φ M
summolem2.7 φ A M
summolem2.8 φ f : 1 N 1-1 onto A
summolem2.9 φ K Isom < , < 1 A A
Assertion summolem2a φ seq M + F seq 1 + G N

Proof

Step Hyp Ref Expression
1 summo.1 F = k if k A B 0
2 summo.2 φ k A B
3 summo.3 G = n f n / k B
4 summolem2.4 H = n K n / k B
5 summolem2.5 φ N
6 summolem2.6 φ M
7 summolem2.7 φ A M
8 summolem2.8 φ f : 1 N 1-1 onto A
9 summolem2.9 φ K Isom < , < 1 A A
10 fzfid φ 1 N Fin
11 10 8 hasheqf1od φ 1 N = A
12 nnnn0 N N 0
13 hashfz1 N 0 1 N = N
14 5 12 13 3syl φ 1 N = N
15 11 14 eqtr3d φ A = N
16 15 oveq2d φ 1 A = 1 N
17 isoeq4 1 A = 1 N K Isom < , < 1 A A K Isom < , < 1 N A
18 16 17 syl φ K Isom < , < 1 A A K Isom < , < 1 N A
19 9 18 mpbid φ K Isom < , < 1 N A
20 isof1o K Isom < , < 1 N A K : 1 N 1-1 onto A
21 19 20 syl φ K : 1 N 1-1 onto A
22 f1of K : 1 N 1-1 onto A K : 1 N A
23 21 22 syl φ K : 1 N A
24 nnuz = 1
25 5 24 eleqtrdi φ N 1
26 eluzfz2 N 1 N 1 N
27 25 26 syl φ N 1 N
28 23 27 ffvelrnd φ K N A
29 7 28 sseldd φ K N M
30 7 sselda φ n A n M
31 f1ocnvfv2 K : 1 N 1-1 onto A n A K K -1 n = n
32 21 31 sylan φ n A K K -1 n = n
33 f1ocnv K : 1 N 1-1 onto A K -1 : A 1-1 onto 1 N
34 f1of K -1 : A 1-1 onto 1 N K -1 : A 1 N
35 21 33 34 3syl φ K -1 : A 1 N
36 35 ffvelrnda φ n A K -1 n 1 N
37 elfzle2 K -1 n 1 N K -1 n N
38 36 37 syl φ n A K -1 n N
39 19 adantr φ n A K Isom < , < 1 N A
40 fzssuz 1 N 1
41 uzssz 1
42 zssre
43 41 42 sstri 1
44 40 43 sstri 1 N
45 ressxr *
46 44 45 sstri 1 N *
47 46 a1i φ n A 1 N *
48 7 adantr φ n A A M
49 uzssz M
50 49 42 sstri M
51 48 50 sstrdi φ n A A
52 51 45 sstrdi φ n A A *
53 27 adantr φ n A N 1 N
54 leisorel K Isom < , < 1 N A 1 N * A * K -1 n 1 N N 1 N K -1 n N K K -1 n K N
55 39 47 52 36 53 54 syl122anc φ n A K -1 n N K K -1 n K N
56 38 55 mpbid φ n A K K -1 n K N
57 32 56 eqbrtrrd φ n A n K N
58 eluzelz n M n
59 30 58 syl φ n A n
60 eluzelz K N M K N
61 29 60 syl φ K N
62 61 adantr φ n A K N
63 eluz n K N K N n n K N
64 59 62 63 syl2anc φ n A K N n n K N
65 57 64 mpbird φ n A K N n
66 elfzuzb n M K N n M K N n
67 30 65 66 sylanbrc φ n A n M K N
68 67 ex φ n A n M K N
69 68 ssrdv φ A M K N
70 1 2 29 69 fsumcvg φ seq M + F seq M + F K N
71 addid2 m 0 + m = m
72 71 adantl φ m 0 + m = m
73 addid1 m m + 0 = m
74 73 adantl φ m m + 0 = m
75 addcl m x m + x
76 75 adantl φ m x m + x
77 0cnd φ 0
78 27 16 eleqtrrd φ N 1 A
79 iftrue k A if k A B 0 = B
80 79 adantl φ k A if k A B 0 = B
81 80 2 eqeltrd φ k A if k A B 0
82 81 ex φ k A if k A B 0
83 iffalse ¬ k A if k A B 0 = 0
84 0cn 0
85 83 84 eqeltrdi ¬ k A if k A B 0
86 82 85 pm2.61d1 φ if k A B 0
87 86 adantr φ k if k A B 0
88 87 1 fmptd φ F :
89 elfzelz m M K A m
90 ffvelrn F : m F m
91 88 89 90 syl2an φ m M K A F m
92 fveqeq2 k = m F k = 0 F m = 0
93 eldifi k M K A A k M K A
94 elfzelz k M K A k
95 93 94 syl k M K A A k
96 eldifn k M K A A ¬ k A
97 96 83 syl k M K A A if k A B 0 = 0
98 97 84 eqeltrdi k M K A A if k A B 0
99 1 fvmpt2 k if k A B 0 F k = if k A B 0
100 95 98 99 syl2anc k M K A A F k = if k A B 0
101 100 97 eqtrd k M K A A F k = 0
102 92 101 vtoclga m M K A A F m = 0
103 102 adantl φ m M K A A F m = 0
104 isof1o K Isom < , < 1 A A K : 1 A 1-1 onto A
105 f1of K : 1 A 1-1 onto A K : 1 A A
106 9 104 105 3syl φ K : 1 A A
107 106 ffvelrnda φ x 1 A K x A
108 107 iftrued φ x 1 A if K x A K x / k B 0 = K x / k B
109 7 adantr φ x 1 A A M
110 109 107 sseldd φ x 1 A K x M
111 eluzelz K x M K x
112 110 111 syl φ x 1 A K x
113 nfv k φ
114 nfv k K x A
115 nfcsb1v _ k K x / k B
116 nfcv _ k 0
117 114 115 116 nfif _ k if K x A K x / k B 0
118 117 nfel1 k if K x A K x / k B 0
119 113 118 nfim k φ if K x A K x / k B 0
120 fvex K x V
121 eleq1 k = K x k A K x A
122 csbeq1a k = K x B = K x / k B
123 121 122 ifbieq1d k = K x if k A B 0 = if K x A K x / k B 0
124 123 eleq1d k = K x if k A B 0 if K x A K x / k B 0
125 124 imbi2d k = K x φ if k A B 0 φ if K x A K x / k B 0
126 119 120 125 86 vtoclf φ if K x A K x / k B 0
127 126 adantr φ x 1 A if K x A K x / k B 0
128 eleq1 n = K x n A K x A
129 csbeq1 n = K x n / k B = K x / k B
130 128 129 ifbieq1d n = K x if n A n / k B 0 = if K x A K x / k B 0
131 nfcv _ n if k A B 0
132 nfv k n A
133 nfcsb1v _ k n / k B
134 132 133 116 nfif _ k if n A n / k B 0
135 eleq1 k = n k A n A
136 csbeq1a k = n B = n / k B
137 135 136 ifbieq1d k = n if k A B 0 = if n A n / k B 0
138 131 134 137 cbvmpt k if k A B 0 = n if n A n / k B 0
139 1 138 eqtri F = n if n A n / k B 0
140 130 139 fvmptg K x if K x A K x / k B 0 F K x = if K x A K x / k B 0
141 112 127 140 syl2anc φ x 1 A F K x = if K x A K x / k B 0
142 elfznn x 1 A x
143 108 127 eqeltrrd φ x 1 A K x / k B
144 fveq2 n = x K n = K x
145 144 csbeq1d n = x K n / k B = K x / k B
146 145 4 fvmptg x K x / k B H x = K x / k B
147 142 143 146 syl2an2 φ x 1 A H x = K x / k B
148 108 141 147 3eqtr4rd φ x 1 A H x = F K x
149 72 74 76 77 9 78 7 91 103 148 seqcoll φ seq M + F K N = seq 1 + H N
150 5 5 jca φ N N
151 1 2 3 4 150 8 21 summolem3 φ seq 1 + G N = seq 1 + H N
152 149 151 eqtr4d φ seq M + F K N = seq 1 + G N
153 70 152 breqtrd φ seq M + F seq 1 + G N