Metamath Proof Explorer


Theorem supmul

Description: The supremum function distributes over multiplication, in the sense that ( sup A ) x. ( sup B ) = sup ( A x. B ) , where A x. B is shorthand for { a x. b | a e. A , b e. B } and is defined as C below. We made use of this in our definition of multiplication in the Dedekind cut construction of the reals (see df-mp ). (Contributed by Mario Carneiro, 5-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2014)

Ref Expression
Hypotheses supmul.1 C = z | v A b B z = v b
supmul.2 φ x A 0 x x B 0 x A A x y A y x B B x y B y x
Assertion supmul φ sup A < sup B < = sup C <

Proof

Step Hyp Ref Expression
1 supmul.1 C = z | v A b B z = v b
2 supmul.2 φ x A 0 x x B 0 x A A x y A y x B B x y B y x
3 2 simp2bi φ A A x y A y x
4 suprcl A A x y A y x sup A <
5 3 4 syl φ sup A <
6 2 simp3bi φ B B x y B y x
7 suprcl B B x y B y x sup B <
8 6 7 syl φ sup B <
9 recn sup A < sup A <
10 recn sup B < sup B <
11 mulcom sup A < sup B < sup A < sup B < = sup B < sup A <
12 9 10 11 syl2an sup A < sup B < sup A < sup B < = sup B < sup A <
13 5 8 12 syl2anc φ sup A < sup B < = sup B < sup A <
14 6 simp2d φ B
15 n0 B b b B
16 14 15 sylib φ b b B
17 0red φ b B 0
18 6 simp1d φ B
19 18 sselda φ b B b
20 8 adantr φ b B sup B <
21 simp1r x A 0 x x B 0 x A A x y A y x B B x y B y x x B 0 x
22 2 21 sylbi φ x B 0 x
23 breq2 x = b 0 x 0 b
24 23 rspccv x B 0 x b B 0 b
25 22 24 syl φ b B 0 b
26 25 imp φ b B 0 b
27 suprub B B x y B y x b B b sup B <
28 6 27 sylan φ b B b sup B <
29 17 19 20 26 28 letrd φ b B 0 sup B <
30 16 29 exlimddv φ 0 sup B <
31 simp1l x A 0 x x B 0 x A A x y A y x B B x y B y x x A 0 x
32 2 31 sylbi φ x A 0 x
33 eqid z | a A z = sup B < a = z | a A z = sup B < a
34 biid sup B < 0 sup B < x A 0 x A A x y A y x sup B < 0 sup B < x A 0 x A A x y A y x
35 33 34 supmul1 sup B < 0 sup B < x A 0 x A A x y A y x sup B < sup A < = sup z | a A z = sup B < a <
36 8 30 32 3 35 syl31anc φ sup B < sup A < = sup z | a A z = sup B < a <
37 13 36 eqtrd φ sup A < sup B < = sup z | a A z = sup B < a <
38 vex w V
39 eqeq1 z = w z = sup B < a w = sup B < a
40 39 rexbidv z = w a A z = sup B < a a A w = sup B < a
41 38 40 elab w z | a A z = sup B < a a A w = sup B < a
42 8 adantr φ a A sup B <
43 3 simp1d φ A
44 43 sselda φ a A a
45 recn a a
46 mulcom sup B < a sup B < a = a sup B <
47 10 45 46 syl2an sup B < a sup B < a = a sup B <
48 42 44 47 syl2anc φ a A sup B < a = a sup B <
49 breq2 x = a 0 x 0 a
50 49 rspccv x A 0 x a A 0 a
51 32 50 syl φ a A 0 a
52 51 imp φ a A 0 a
53 22 adantr φ a A x B 0 x
54 6 adantr φ a A B B x y B y x
55 eqid z | b B z = a b = z | b B z = a b
56 biid a 0 a x B 0 x B B x y B y x a 0 a x B 0 x B B x y B y x
57 55 56 supmul1 a 0 a x B 0 x B B x y B y x a sup B < = sup z | b B z = a b <
58 44 52 53 54 57 syl31anc φ a A a sup B < = sup z | b B z = a b <
59 eqeq1 z = w z = a b w = a b
60 59 rexbidv z = w b B z = a b b B w = a b
61 38 60 elab w z | b B z = a b b B w = a b
62 rspe a A b B w = a b a A b B w = a b
63 oveq1 v = a v b = a b
64 63 eqeq2d v = a z = v b z = a b
65 64 rexbidv v = a b B z = v b b B z = a b
66 65 cbvrexvw v A b B z = v b a A b B z = a b
67 59 2rexbidv z = w a A b B z = a b a A b B w = a b
68 66 67 syl5bb z = w v A b B z = v b a A b B w = a b
69 38 68 1 elab2 w C a A b B w = a b
70 62 69 sylibr a A b B w = a b w C
71 70 ex a A b B w = a b w C
72 1 2 supmullem2 φ C C x w C w x
73 suprub C C x w C w x w C w sup C <
74 73 ex C C x w C w x w C w sup C <
75 72 74 syl φ w C w sup C <
76 71 75 sylan9r φ a A b B w = a b w sup C <
77 61 76 syl5bi φ a A w z | b B z = a b w sup C <
78 77 ralrimiv φ a A w z | b B z = a b w sup C <
79 44 adantr φ a A b B a
80 19 adantlr φ a A b B b
81 79 80 remulcld φ a A b B a b
82 eleq1a a b z = a b z
83 81 82 syl φ a A b B z = a b z
84 83 rexlimdva φ a A b B z = a b z
85 84 abssdv φ a A z | b B z = a b
86 ovex a b V
87 86 isseti w w = a b
88 87 rgenw b B w w = a b
89 r19.2z B b B w w = a b b B w w = a b
90 14 88 89 sylancl φ b B w w = a b
91 rexcom4 b B w w = a b w b B w = a b
92 90 91 sylib φ w b B w = a b
93 60 cbvexvw z b B z = a b w b B w = a b
94 92 93 sylibr φ z b B z = a b
95 abn0 z | b B z = a b z b B z = a b
96 94 95 sylibr φ z | b B z = a b
97 96 adantr φ a A z | b B z = a b
98 suprcl C C x w C w x sup C <
99 72 98 syl φ sup C <
100 99 adantr φ a A sup C <
101 brralrspcev sup C < w z | b B z = a b w sup C < x w z | b B z = a b w x
102 100 78 101 syl2anc φ a A x w z | b B z = a b w x
103 suprleub z | b B z = a b z | b B z = a b x w z | b B z = a b w x sup C < sup z | b B z = a b < sup C < w z | b B z = a b w sup C <
104 85 97 102 100 103 syl31anc φ a A sup z | b B z = a b < sup C < w z | b B z = a b w sup C <
105 78 104 mpbird φ a A sup z | b B z = a b < sup C <
106 58 105 eqbrtrd φ a A a sup B < sup C <
107 48 106 eqbrtrd φ a A sup B < a sup C <
108 breq1 w = sup B < a w sup C < sup B < a sup C <
109 107 108 syl5ibrcom φ a A w = sup B < a w sup C <
110 109 rexlimdva φ a A w = sup B < a w sup C <
111 41 110 syl5bi φ w z | a A z = sup B < a w sup C <
112 111 ralrimiv φ w z | a A z = sup B < a w sup C <
113 42 44 remulcld φ a A sup B < a
114 eleq1a sup B < a z = sup B < a z
115 113 114 syl φ a A z = sup B < a z
116 115 rexlimdva φ a A z = sup B < a z
117 116 abssdv φ z | a A z = sup B < a
118 3 simp2d φ A
119 ovex sup B < a V
120 119 isseti z z = sup B < a
121 120 rgenw a A z z = sup B < a
122 r19.2z A a A z z = sup B < a a A z z = sup B < a
123 118 121 122 sylancl φ a A z z = sup B < a
124 rexcom4 a A z z = sup B < a z a A z = sup B < a
125 123 124 sylib φ z a A z = sup B < a
126 abn0 z | a A z = sup B < a z a A z = sup B < a
127 125 126 sylibr φ z | a A z = sup B < a
128 brralrspcev sup C < w z | a A z = sup B < a w sup C < x w z | a A z = sup B < a w x
129 99 112 128 syl2anc φ x w z | a A z = sup B < a w x
130 suprleub z | a A z = sup B < a z | a A z = sup B < a x w z | a A z = sup B < a w x sup C < sup z | a A z = sup B < a < sup C < w z | a A z = sup B < a w sup C <
131 117 127 129 99 130 syl31anc φ sup z | a A z = sup B < a < sup C < w z | a A z = sup B < a w sup C <
132 112 131 mpbird φ sup z | a A z = sup B < a < sup C <
133 37 132 eqbrtrd φ sup A < sup B < sup C <
134 1 2 supmullem1 φ w C w sup A < sup B <
135 5 8 remulcld φ sup A < sup B <
136 suprleub C C x w C w x sup A < sup B < sup C < sup A < sup B < w C w sup A < sup B <
137 72 135 136 syl2anc φ sup C < sup A < sup B < w C w sup A < sup B <
138 134 137 mpbird φ sup C < sup A < sup B <
139 135 99 letri3d φ sup A < sup B < = sup C < sup A < sup B < sup C < sup C < sup A < sup B <
140 133 138 139 mpbir2and φ sup A < sup B < = sup C <