Metamath Proof Explorer


Theorem tanarg

Description: The basic relation between the "arg" function Im o. log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion tanarg AA0tanlogA=AA

Proof

Step Hyp Ref Expression
1 fveq2 A=0A=0
2 re0 0=0
3 1 2 eqtrdi A=0A=0
4 3 necon3i A0A0
5 logcl AA0logA
6 4 5 sylan2 AA0logA
7 6 imcld AA0logA
8 7 recnd AA0logA
9 sqcl AA2
10 9 adantr AA0A2
11 abscl AA
12 11 adantr AA0A
13 12 recnd AA0A
14 13 sqcld AA0A2
15 absrpcl AA0A+
16 4 15 sylan2 AA0A+
17 16 rpne0d AA0A0
18 sqne0 AA20A0
19 13 18 syl AA0A20A0
20 17 19 mpbird AA0A20
21 10 14 14 20 divdird AA0A2+A2A2=A2A2+A2A2
22 ax-icn i
23 mulcl ilogAilogA
24 22 8 23 sylancr AA0ilogA
25 2z 2
26 efexp ilogA2e2ilogA=eilogA2
27 24 25 26 sylancl AA0e2ilogA=eilogA2
28 efiarg AA0eilogA=AA
29 4 28 sylan2 AA0eilogA=AA
30 29 oveq1d AA0eilogA2=AA2
31 simpl AA0A
32 31 13 17 sqdivd AA0AA2=A2A2
33 27 30 32 3eqtrrd AA0A2A2=e2ilogA
34 14 20 dividd AA0A2A2=1
35 33 34 oveq12d AA0A2A2+A2A2=e2ilogA+1
36 21 35 eqtr2d AA0e2ilogA+1=A2+A2A2
37 10 14 addcld AA0A2+A2
38 22 a1i AA0i
39 2cn 2
40 recl AA
41 40 adantr AA0A
42 41 recnd AA0A
43 42 sqcld AA0A2
44 mulcl 2A22A2
45 39 43 44 sylancr AA02A2
46 39 a1i AA02
47 imcl AA
48 47 adantr AA0A
49 48 recnd AA0A
50 42 49 mulcld AA0AA
51 38 46 50 mul12d AA0i2AA=2iAA
52 38 42 49 mul12d AA0iAA=AiA
53 52 oveq2d AA02iAA=2AiA
54 51 53 eqtrd AA0i2AA=2AiA
55 mulcl iAiA
56 22 49 55 sylancr AA0iA
57 42 56 mulcld AA0AiA
58 mulcl 2AiA2AiA
59 39 57 58 sylancr AA02AiA
60 54 59 eqeltrd AA0i2AA
61 38 45 60 adddid AA0i2A2+i2AA=i2A2+ii2AA
62 mulcl AiAi
63 42 22 62 sylancl AA0Ai
64 46 63 42 mulassd AA02AiA=2AiA
65 42 sqvald AA0A2=AA
66 65 oveq1d AA0A2i=AAi
67 mulcom A2iA2i=iA2
68 43 22 67 sylancl AA0A2i=iA2
69 42 42 38 mul32d AA0AAi=AiA
70 66 68 69 3eqtr3d AA0iA2=AiA
71 70 oveq2d AA02iA2=2AiA
72 46 38 43 mul12d AA02iA2=i2A2
73 64 71 72 3eqtr2d AA02AiA=i2A2
74 ixi ii=1
75 74 oveq1i ii2AA=-12AA
76 mulcl 2A2A
77 39 49 76 sylancr AA02A
78 77 42 mulcld AA02AA
79 38 38 78 mulassd AA0ii2AA=ii2AA
80 75 79 eqtr3id AA0-12AA=ii2AA
81 78 mulm1d AA0-12AA=2AA
82 46 49 42 mulassd AA02AA=2AA
83 49 42 mulcomd AA0AA=AA
84 83 oveq2d AA02AA=2AA
85 82 84 eqtrd AA02AA=2AA
86 85 oveq2d AA0i2AA=i2AA
87 86 oveq2d AA0ii2AA=ii2AA
88 80 81 87 3eqtr3d AA02AA=ii2AA
89 73 88 oveq12d AA02AiA+2AA=i2A2+ii2AA
90 mulcl 2Ai2Ai
91 39 63 90 sylancr AA02Ai
92 91 42 mulcld AA02AiA
93 92 78 negsubd AA02AiA+2AA=2AiA2AA
94 61 89 93 3eqtr2d AA0i2A2+i2AA=2AiA2AA
95 49 sqcld AA0A2
96 59 95 subcld AA02AiAA2
97 43 96 43 95 add4d AA0A2+2AiAA2+A2+A2=A2+A2+2AiAA2+A2
98 replim AA=A+iA
99 98 adantr AA0A=A+iA
100 99 oveq1d AA0A2=A+iA2
101 binom2 AiAA+iA2=A2+2AiA+iA2
102 42 56 101 syl2anc AA0A+iA2=A2+2AiA+iA2
103 sqmul iAiA2=i2A2
104 22 49 103 sylancr AA0iA2=i2A2
105 i2 i2=1
106 105 oveq1i i2A2=-1A2
107 104 106 eqtrdi AA0iA2=-1A2
108 95 mulm1d AA0-1A2=A2
109 107 108 eqtrd AA0iA2=A2
110 109 oveq2d AA0A2+2AiA+iA2=A2+2AiA+A2
111 43 59 addcld AA0A2+2AiA
112 111 95 negsubd AA0A2+2AiA+A2=A2+2AiA-A2
113 102 110 112 3eqtrd AA0A+iA2=A2+2AiA-A2
114 43 59 95 addsubassd AA0A2+2AiA-A2=A2+2AiA-A2
115 100 113 114 3eqtrd AA0A2=A2+2AiA-A2
116 absvalsq2 AA2=A2+A2
117 116 adantr AA0A2=A2+A2
118 115 117 oveq12d AA0A2+A2=A2+2AiAA2+A2+A2
119 43 2timesd AA02A2=A2+A2
120 59 95 npcand AA02AiA-A2+A2=2AiA
121 53 51 120 3eqtr4d AA0i2AA=2AiA-A2+A2
122 119 121 oveq12d AA02A2+i2AA=A2+A2+2AiAA2+A2
123 97 118 122 3eqtr4d AA0A2+A2=2A2+i2AA
124 123 oveq2d AA0iA2+A2=i2A2+i2AA
125 91 77 42 subdird AA02Ai2AA=2AiA2AA
126 94 124 125 3eqtr4d AA0iA2+A2=2Ai2AA
127 91 77 subcld AA02Ai2A
128 mulcom AiAi=iA
129 42 22 128 sylancl AA0Ai=iA
130 simpr AA0A0
131 eleq1 iA=AiAA
132 48 131 syl5ibrcom AA0iA=AiA
133 rimul AiAA=0
134 41 132 133 syl6an AA0iA=AA=0
135 134 necon3d AA0A0iAA
136 130 135 mpd AA0iAA
137 129 136 eqnetrd AA0AiA
138 91 77 subeq0ad AA02Ai2A=02Ai=2A
139 2ne0 20
140 139 a1i AA020
141 63 49 46 140 mulcand AA02Ai=2AAi=A
142 138 141 bitrd AA02Ai2A=0Ai=A
143 142 necon3bid AA02Ai2A0AiA
144 137 143 mpbird AA02Ai2A0
145 127 42 144 130 mulne0d AA02Ai2AA0
146 126 145 eqnetrd AA0iA2+A20
147 oveq2 A2+A2=0iA2+A2=i0
148 it0e0 i0=0
149 147 148 eqtrdi A2+A2=0iA2+A2=0
150 149 necon3i iA2+A20A2+A20
151 146 150 syl AA0A2+A20
152 37 14 151 20 divne0d AA0A2+A2A20
153 36 152 eqnetrd AA0e2ilogA+10
154 tanval3 logAe2ilogA+10tanlogA=e2ilogA1ie2ilogA+1
155 8 153 154 syl2anc AA0tanlogA=e2ilogA1ie2ilogA+1
156 10 14 14 20 divsubdird AA0A2A2A2=A2A2A2A2
157 33 34 oveq12d AA0A2A2A2A2=e2ilogA1
158 156 157 eqtr2d AA0e2ilogA1=A2A2A2
159 36 oveq2d AA0ie2ilogA+1=iA2+A2A2
160 38 37 14 20 divassd AA0iA2+A2A2=iA2+A2A2
161 159 160 eqtr4d AA0ie2ilogA+1=iA2+A2A2
162 158 161 oveq12d AA0e2ilogA1ie2ilogA+1=A2A2A2iA2+A2A2
163 10 14 subcld AA0A2A2
164 mulcl iA2+A2iA2+A2
165 22 37 164 sylancr AA0iA2+A2
166 163 165 14 146 20 divcan7d AA0A2A2A2iA2+A2A2=A2A2iA2+A2
167 115 117 oveq12d AA0A2A2=A2+2AiAA2-A2+A2
168 43 96 95 pnpcand AA0A2+2AiAA2-A2+A2=2AiA-A2-A2
169 59 95 95 subsub4d AA02AiA-A2-A2=2AiAA2+A2
170 95 2timesd AA02A2=A2+A2
171 170 oveq2d AA02AiA2A2=2AiAA2+A2
172 46 63 49 mulassd AA02AiA=2AiA
173 42 38 49 mulassd AA0AiA=AiA
174 173 oveq2d AA02AiA=2AiA
175 172 174 eqtr2d AA02AiA=2AiA
176 49 sqvald AA0A2=AA
177 176 oveq2d AA02A2=2AA
178 46 49 49 mulassd AA02AA=2AA
179 177 178 eqtr4d AA02A2=2AA
180 175 179 oveq12d AA02AiA2A2=2AiA2AA
181 91 77 49 subdird AA02Ai2AA=2AiA2AA
182 180 181 eqtr4d AA02AiA2A2=2Ai2AA
183 169 171 182 3eqtr2d AA02AiA-A2-A2=2Ai2AA
184 167 168 183 3eqtrd AA0A2A2=2Ai2AA
185 184 126 oveq12d AA0A2A2iA2+A2=2Ai2AA2Ai2AA
186 49 42 127 130 144 divcan5d AA02Ai2AA2Ai2AA=AA
187 166 185 186 3eqtrd AA0A2A2A2iA2+A2A2=AA
188 155 162 187 3eqtrd AA0tanlogA=AA