Metamath Proof Explorer


Theorem tcrank

Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below A . Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below ( rankA ) , constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of ( TCA ) has a rank below the rank of A , since intuitively it contains only the members of A and the members of those and so on, but nothing "bigger" than A . (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcrank AR1OnrankA=rankTCA

Proof

Step Hyp Ref Expression
1 rankwflemb AR1OnyOnAR1sucy
2 onsuc yOnsucyOn
3 fveq2 x=yR1x=R1y
4 3 raleqdv x=yzR1xrankzrankTCzzR1yrankzrankTCz
5 fveq2 z=urankz=ranku
6 fveq2 z=uTCz=TCu
7 6 imaeq2d z=urankTCz=rankTCu
8 5 7 sseq12d z=urankzrankTCzrankurankTCu
9 8 cbvralvw zR1yrankzrankTCzuR1yrankurankTCu
10 4 9 bitrdi x=yzR1xrankzrankTCzuR1yrankurankTCu
11 fveq2 x=sucyR1x=R1sucy
12 11 raleqdv x=sucyzR1xrankzrankTCzzR1sucyrankzrankTCz
13 simpr xOnyxuR1yrankurankTCuzR1xwrankzzR1xwrankz
14 simprl xOnyxuR1yrankurankTCuzR1xwrankzzR1x
15 simplr xOnyxuR1yrankurankTCuzR1xwrankzyxuR1yrankurankTCu
16 rankr1ai zR1xrankzx
17 fveq2 y=rankzR1y=R1rankz
18 17 raleqdv y=rankzuR1yrankurankTCuuR1rankzrankurankTCu
19 18 rspcv rankzxyxuR1yrankurankTCuuR1rankzrankurankTCu
20 16 19 syl zR1xyxuR1yrankurankTCuuR1rankzrankurankTCu
21 r1elwf zR1xzR1On
22 r1rankidb zR1OnzR1rankz
23 ssralv zR1rankzuR1rankzrankurankTCuuzrankurankTCu
24 21 22 23 3syl zR1xuR1rankzrankurankTCuuzrankurankTCu
25 20 24 syld zR1xyxuR1yrankurankTCuuzrankurankTCu
26 14 15 25 sylc xOnyxuR1yrankurankTCuzR1xwrankzuzrankurankTCu
27 rankval3b zR1Onrankz=xOn|uzrankux
28 27 eleq2d zR1OnwrankzwxOn|uzrankux
29 28 biimpd zR1OnwrankzwxOn|uzrankux
30 rankon rankzOn
31 30 oneli wrankzwOn
32 eleq2w x=wrankuxrankuw
33 32 ralbidv x=wuzrankuxuzrankuw
34 33 onnminsb wOnwxOn|uzrankux¬uzrankuw
35 31 34 syl wrankzwxOn|uzrankux¬uzrankuw
36 29 35 sylcom zR1Onwrankz¬uzrankuw
37 21 36 syl zR1xwrankz¬uzrankuw
38 37 imp zR1xwrankz¬uzrankuw
39 rexnal uz¬rankuw¬uzrankuw
40 38 39 sylibr zR1xwrankzuz¬rankuw
41 40 adantl xOnyxuR1yrankurankTCuzR1xwrankzuz¬rankuw
42 r19.29 uzrankurankTCuuz¬rankuwuzrankurankTCu¬rankuw
43 26 41 42 syl2anc xOnyxuR1yrankurankTCuzR1xwrankzuzrankurankTCu¬rankuw
44 simp2 zR1xwrankzuzrankurankTCu¬rankuwuz
45 tcid zVzTCz
46 45 elv zTCz
47 46 sseli uzuTCz
48 fveqeq2 x=urankx=wranku=w
49 48 rspcev uTCzranku=wxTCzrankx=w
50 49 ex uTCzranku=wxTCzrankx=w
51 44 47 50 3syl zR1xwrankzuzrankurankTCu¬rankuwranku=wxTCzrankx=w
52 simp3l zR1xwrankzuzrankurankTCu¬rankuwrankurankTCu
53 52 sseld zR1xwrankzuzrankurankTCu¬rankuwwrankuwrankTCu
54 simp1l zR1xwrankzuzrankurankTCu¬rankuwzR1x
55 rankf rank:R1OnOn
56 ffn rank:R1OnOnrankFnR1On
57 55 56 ax-mp rankFnR1On
58 r1tr TrR1x
59 trel TrR1xuzzR1xuR1x
60 58 59 ax-mp uzzR1xuR1x
61 r1elwf uR1xuR1On
62 tcwf uR1OnTCuR1On
63 fvex TCuV
64 63 r1elss TCuR1OnTCuR1On
65 62 64 sylib uR1OnTCuR1On
66 60 61 65 3syl uzzR1xTCuR1On
67 fvelimab rankFnR1OnTCuR1OnwrankTCuxTCurankx=w
68 57 66 67 sylancr uzzR1xwrankTCuxTCurankx=w
69 vex zV
70 69 tcel uzTCuTCz
71 ssrexv TCuTCzxTCurankx=wxTCzrankx=w
72 70 71 syl uzxTCurankx=wxTCzrankx=w
73 72 adantr uzzR1xxTCurankx=wxTCzrankx=w
74 68 73 sylbid uzzR1xwrankTCuxTCzrankx=w
75 44 54 74 syl2anc zR1xwrankzuzrankurankTCu¬rankuwwrankTCuxTCzrankx=w
76 53 75 syld zR1xwrankzuzrankurankTCu¬rankuwwrankuxTCzrankx=w
77 rankon rankuOn
78 eloni rankuOnOrdranku
79 eloni wOnOrdw
80 ordtri3or OrdrankuOrdwrankuwranku=wwranku
81 78 79 80 syl2an rankuOnwOnrankuwranku=wwranku
82 77 31 81 sylancr wrankzrankuwranku=wwranku
83 3orass rankuwranku=wwrankurankuwranku=wwranku
84 82 83 sylib wrankzrankuwranku=wwranku
85 84 orcanai wrankz¬rankuwranku=wwranku
86 85 ad2ant2l zR1xwrankzrankurankTCu¬rankuwranku=wwranku
87 86 3adant2 zR1xwrankzuzrankurankTCu¬rankuwranku=wwranku
88 51 76 87 mpjaod zR1xwrankzuzrankurankTCu¬rankuwxTCzrankx=w
89 88 rexlimdv3a zR1xwrankzuzrankurankTCu¬rankuwxTCzrankx=w
90 13 43 89 sylc xOnyxuR1yrankurankTCuzR1xwrankzxTCzrankx=w
91 90 expr xOnyxuR1yrankurankTCuzR1xwrankzxTCzrankx=w
92 tcwf zR1OnTCzR1On
93 r1elssi TCzR1OnTCzR1On
94 fvelimab rankFnR1OnTCzR1OnwrankTCzxTCzrankx=w
95 93 94 sylan2 rankFnR1OnTCzR1OnwrankTCzxTCzrankx=w
96 57 92 95 sylancr zR1OnwrankTCzxTCzrankx=w
97 21 96 syl zR1xwrankTCzxTCzrankx=w
98 97 adantl xOnyxuR1yrankurankTCuzR1xwrankTCzxTCzrankx=w
99 91 98 sylibrd xOnyxuR1yrankurankTCuzR1xwrankzwrankTCz
100 99 ssrdv xOnyxuR1yrankurankTCuzR1xrankzrankTCz
101 100 ralrimiva xOnyxuR1yrankurankTCuzR1xrankzrankTCz
102 101 ex xOnyxuR1yrankurankTCuzR1xrankzrankTCz
103 10 12 102 tfis3 sucyOnzR1sucyrankzrankTCz
104 fveq2 z=Arankz=rankA
105 fveq2 z=ATCz=TCA
106 105 imaeq2d z=ArankTCz=rankTCA
107 104 106 sseq12d z=ArankzrankTCzrankArankTCA
108 107 rspccv zR1sucyrankzrankTCzAR1sucyrankArankTCA
109 2 103 108 3syl yOnAR1sucyrankArankTCA
110 109 rexlimiv yOnAR1sucyrankArankTCA
111 1 110 sylbi AR1OnrankArankTCA
112 tcvalg AR1OnTCA=x|AxTrx
113 r1rankidb AR1OnAR1rankA
114 r1tr TrR1rankA
115 fvex R1rankAV
116 sseq2 x=R1rankAAxAR1rankA
117 treq x=R1rankATrxTrR1rankA
118 116 117 anbi12d x=R1rankAAxTrxAR1rankATrR1rankA
119 115 118 elab R1rankAx|AxTrxAR1rankATrR1rankA
120 intss1 R1rankAx|AxTrxx|AxTrxR1rankA
121 119 120 sylbir AR1rankATrR1rankAx|AxTrxR1rankA
122 113 114 121 sylancl AR1Onx|AxTrxR1rankA
123 112 122 eqsstrd AR1OnTCAR1rankA
124 imass2 TCAR1rankArankTCArankR1rankA
125 ffun rank:R1OnOnFunrank
126 55 125 ax-mp Funrank
127 fvelima FunrankxrankR1rankAyR1rankAranky=x
128 126 127 mpan xrankR1rankAyR1rankAranky=x
129 rankr1ai yR1rankArankyrankA
130 eleq1 ranky=xrankyrankAxrankA
131 129 130 syl5ibcom yR1rankAranky=xxrankA
132 131 rexlimiv yR1rankAranky=xxrankA
133 128 132 syl xrankR1rankAxrankA
134 133 ssriv rankR1rankArankA
135 124 134 sstrdi TCAR1rankArankTCArankA
136 123 135 syl AR1OnrankTCArankA
137 111 136 eqssd AR1OnrankA=rankTCA